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Preface

The purpose of this paper is twofold: on the one hand, give an accurate exposition
of Mazur’s Theorem as it was proved in the 1977 paper Modular Curves and the
Eisenstein Ideal [Maz]. On the other, I wanted to make the reading accessible for
the undergraduate who has not yet received but the barest introduction to the
language of schemes, of which Mazur makes heavy use in the paper. Of course,
in doing so we had to gloss over some of the more technical aspects of the proof,
but where possible we have presented the arguments in a language that can be
understood by anyone familiar with the contents of Silverman’s wonderful book
The Arithmetic of Elliptic Curves [Si1]. I hope that this approach in no way will
discourage the inexperienced reader to further investigate the topics covered, but
it will rather inspire to independently complete the parts of the proof that are
referred back to Mazur’s paper, and explore the numerous references given.
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Introduction

1 Why Study Elliptic Curves

One of the most spectacular aspects of number theory is the determination of in-
teger solutions to polynomial equations with coefficients in the rational numbers,
a branch of mathematics known as Diophantine analysis. The name comes from
Diophantus of Alexandria, a Greek mathematician of the III century AD who is
often credited to be the father of the subject. In particular he is credited, together
with the Arab mathematician al-Khwārizmī, with the invention of symbolic ma-
nipulation, the very foundation of what we may call Algebra in a broad sense.
Up until Diophantus, in fact, other Greek mathematicians (such as Euclid) would
mainly rely on geometric arguments to prove their theorems.

But the study of Diophantine equations is much older than Diophantus
himself. The Indian mathematician and priest Baudhayana, for example, inde-
pendently formalized the Pythagorean Theorem around 800 BC and found ap-
proximations of

√
2 by rational numbers. In particular, he noted that any pair of

integers (x, y) satisfying:

(1) x2 − 2y2 = 1

would produce an approximation of
√

2 just by taking x/y. About 1500 years
later, the Indian mathematician Brahmagupta described a remarkable algorithm
to find integer solutions to equation (1), called the chakravala method. The German
mathematician Hankel described this method as ’the finest thing achieved in the
theory of numbers before Lagrange’ [Kay]. Oddly enough, this equation is today
known as Pell’s equation, after Euler attributed its study to a British mathematician
of the XVII century.
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The work of Diophantus is collected in a book called Arithmetica, which
became known in Europe only at the end of the XVI Century when it started to
be translated into Latin. In 1637, the French lawyer and mathematician Pierre de
Fermat, while studying his copy of Arithmetica, conjectured that the Diophantine
equation

xn + yn = zn

has no (nontrivial) integer solutions (x, y, z) for any integer n > 2. Of course for
n = 2 this is just the Pythagorean Theorem. Probably nobody would have taken
the time to study this equation, except that Fermat had the brilliant idea of stating
on the margin of his edition of Arithmetica that

”Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis
exiguitas non caperet.”

which translates into ’I found a truly marvelous proof of this statement,
which this margin is too narrow to contain’. Mathematicians often love chal-
lenges, and the challenge thrown by Fermat motivated a lot of the development
of number theory in the subsequent centuries. In 1994, thanks to the work of Frey,
Ribet, Serre, Taylor and Wiles, a proof of the statement was derived in the broader
context of studying the connections between elliptic curves and modular forms.
Similarly, many questions in Diophantine analysis can be reduced to questions
about elliptic curves, where both the tools of algebraic geometry and algebraic
number theory can be applied.

But this is only one of the applications of the study of elliptic curves and,
in a sense, a very selfish application. A much more concrete one was found in-
dependently in 1985 by Neal Koblitz and Victor Miller, when they proposed the
use of elliptic curves in public key cryptography. Since then, elliptic curves have
become one of the standards of public-key cryptography, and are widely used
in everyday applications. The advantage over other systems is the hardness of
certain computational problems related to the group structure of an elliptic curve
(mainly the discrete logarithm problem), which allows for shorter keys and more
efficient implementations. However, as Menezes, Okamoto and Vanstone have
shown [MOV] one has to be very careful in implementing cryptographic proto-
cols using elliptic curves. Since these are still fairly unknown objects, there is
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always the possibility of finding shortcuts and additional structure that could
reduce the hardness of the discrete logarithm problem defined on the group of
points of an elliptic curve. A study of the arithmetic properties of elliptic curves,
therefore, could be very important even for the applied mathematician who does
not get very excited by questions in Diophantine analysis.

Finally, for the pure mathematician the study of elliptic curves is a very re-
warding one on its own. The structure of these miracolous mathematical objects
is very beautiful, and it allows to bring together many different branches of math-
ematics that would otherwise struggle in finding a common ground. In this sense,
the theory of elliptic curves is a place where ideas are exchaged and problems are
formulated that inspire a very broad spectrum of the mathematical community.

2 Statement of the Problem and Outline of Contents

Let E/Q be an elliptic curve defined over Q. By the Mordell-Weil Theorem [Si1
VIII], the group of points E(Q) is a finitely generated abelian group. Its structure
is of the form:

E(Q) = Etors(Q)× Zr

where r is a positive integer of which very little is known. Whereas computations
show that r is usually very small, it is conjectured that there exists curves with
arbitrarily high rank (for a discussion, see [Si1 VIII.10]). In particular, a conjec-
ture of Birch and Swinnerton-Dyer relates r to the order of vanishing of a certain
function defined over the complex plane.

In this paper, we are interested in the other component of E(Q), i.e. the
group of points of E(Q) of finite order. For a given elliptic curve, these are easy
to compute thanks to the following theorem of Lutz and Nagell

Theorem (Lutz-Nagell). Let E/Q be an elliptic curve with Weierstrass equation

y2 = x3 + Ax+B A,B ∈ Z

Suppose P ∈ E(Q) is non-zero torsion point. Then

(a) x(P ), y(P ) ∈ Z
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(b) Either [2]P = O, or else y(P )2 divides 4A3 + 27B2.

Proof. This is in [Si1 VIII.7]

The theorem gives an effective procedure for finding torsion points, espe-
cially when the discriminant has only a few divisors.

A much harder question is to completely classify all the possible torsion
structures of E(Q). In other words, to give a list of all the possible groups that
may occur as Etors(Q). In 1975 Ogg conjectured the following:

Theorem. Let E be an elliptic curve defined over Q. Then Etors(Q) is isomorphic to one
of the following fifteen groups:

• Z/nZ for 1 ≤ n ≤ 10 or n = 12

• Z/2Z× Z/mZ for m = 2, 4, 6, 8

which was proven by Barry Mazur in his 1977 paper Modular Curves and the
Eisenstein Ideal. In fact, the paper proves a lot more than just Ogg’s conjecture,
and it is often difficult for the reader only interested in the classification of the
rational torsion to isolate the parts needed to prove the statement. One purpose
of this paper is precisely to collect the passages that give the proof of Mazur’s
Theorem in one place and clarify the logical structure of the argument. The other
purpose, as stated in the preface, is to give a presentation that can be understood
by any undergraduate student who is familiar with the arithmetic theory of ellip-
tic curves at the level of Silverman’s book [Si1].

In Chapter I, we introduce the reader to the theory of the modular curves
X0(N), the central object of study of Mazur’s paper. We have omitted some of the
more basic proofs, which can be found in many texts such as [Si2], and empha-
sized the calculation of the genus of X0(N), which is somewhat less of a standard
application to be seen in textbooks, but that sheds a lot of light on the structure
of these curves.

In Chapter 2, we begin a systematic exposition of Mazur’s argument. The
first section is devoted to the construction of a certain quotient J of the Jacobian
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2. STATEMENT OF THE PROBLEM AND OUTLINE OF CONTENTS 1

of X0(N), called by Mazur the Eisenstein quotient. In the second section we out-
line some of the scheme-theoretic tools used in the proof of the finitiness of the
rational part of the Eisenstein quotient. In third section we apply pm-descent on
Jac(X0(N)) to prove finitiness of X0(N)(Q).

In Chapter 3, we use finiteness of X0(N)(Q) to prove Mazur’s Theorem. In
this chapter in particular, I have tried to translate the language used by Mazur to
a language closer to Silverman’s Arithmetic of Elliptic Curves. I hope the experi-
enced reader will forgive some of the imprecisions, and will appreciate the effort
in trying to make a clear exposition of a paper which was certainly not meant to
be read by undergraduates. Enjoy the reading.
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Chapter I

Modular Curves

Mazur’s Theorem is in some sense a statement about the set of all elliptic curves,
in particular those possessing a rational torsion point. There is a way in which
the set of all (isomorphism classes of) elliptic curves can be efficiently studied,
and this is done by giving it the structure of an algebraic curve. Similarly, the set
of all (isomorphism classes of) elliptic curves with a torsion subgroup of order N
can also be parametrized by an algebraic curve. Such curves are called modular
curves, and are denoted by X(1) and X0(N) respectively.

This chapter is divided into two sections: in the first one, we construct the
modular curves X(1) and X0(N) as compact Riemann Surfaces and study some
of their properties. In particular, we obtain a formula for the genus of X0(N) in
terms of N . In the second section, we outline the connection with the theory of
elliptic curves and state some important facts that will be important later in the
proof of Mazur’s Theorem.

1 Construction of Modular Curves

Definition 1.1. A topological group G is a Hausdorff topological space that is also
a group, and whose multiplication map m : G × G → G and inversion map
i : G→ G are continuous. We denote by e the identity element of G.

Suppose now that T is another topological space and that we are given a

3



4 CHAPTER I. MODULAR CURVES

continuous map G× T → T (denoted by (g, t) 7→ gt) satisfying the following:

(i) (gh)t = g(ht)

(ii) et = t for all t ∈ T

Then we say that G acts continuously on T. In this situation it makes sense to con-
sider, for each t ∈ T , the set Gt = {gt : g ∈ G}, called the orbit of t under G, and the
set G\T = {Gt : t ∈ T}. If this set consists of only one element, we say that G acts
transitively on T. By considering the surjective map π : T → G\T , which sends
t 7→ Gt, we can make G\T into a topological space.

1.1 The Modular Curve X(1)

Consider first the group G = GL2(C) of invertible 2 × 2 matrices with entries in
C. As a subset of C4, it inherits a subspace topology from the Euclidean topology.
Moreover, one can easily check that the multiplication and inversion maps are
continuous with respect to this topology, giving the structure of a topological
group.

The group GL2(C) acts continuously on C as follows: for anyA =

(
a b

c d

)
define the function

A(z) =
az + b

cz + d

which is meromorphic on C with a single pole at z = −d/c. Note that multiplica-
tion by a constant α ∈ C× may change the matrix A but it does not change A(z).
Therefore, GL2(C) actually acts through its quotient PGL2(C) = GL2(C)/{αI :

α ∈ C×}. This action is transitive, for it is a classical result in complex analysis
that if z1, z2, z3 and w1, w2, w3 are complex numbers, there is a unique map of the
form A(z) mapping zi to wi, for A ∈ GL2(C).

If we take any discrete subgroup Γ ⊂ PGL2(C) one can show that Γ\C is a
Hausdorff space [Shi 1.1]. In particular, consider the discrete subgroup SL2(Z) ⊂
GL2(C), consisting of matrices with integer entries and determinant 1, and its
image Γ(1) = SL2(Z)/{±I} inside the quotient PGL2(C). Note that for any z ∈ C
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and A =

(
a b

c d

)
∈ GL2(C), we have

=[A(z)] = (ad− bc)
=[z]

|cz + d|2

from which we see that in fact Γ(1) acts on the upper-half plane H = {z ∈ C :

=[z] > 0}. The space Y (1) = Γ(1)\H is Hausdorff. For geometric applications,
however, being Hausdorff might not be enough. We would like to compactify
Y (1) much in the same way in which we obatin the Riemann Sphere P1(C) from
the 1-point compactification of C. One has to be careful, however, about throwing
in ∞ without understanding first the action of Γ(1) on H ∪ {∞}.

We consider first the fixed points of the functions A(z), where A ∈ GL2(C).
Since AB(z) = A(B(z)), a change of basis does not affect the number of fixed
points of A(z). Therefore it suffices to consider only the number of fixed points
of transformations that are representative of each conjugacy class. Now, from
the theory of Jordan Canonical Form, we know that every matrix A in GL2(C) is
conjugate to one of:

Tλ =

(
λ 1

0 λ

)
, Sλ,µ =

(
λ 0

0 µ

)
for some choice of λ, µ ∈ C×. We call the first family parabolic, and the second
elliptic. Therefore there are only two possibilities for the number of fixed points,
depending on whether A is parabolic or elliptic . Take first the transformation
Tλ(z) associated to Tλ:

Tλ(z) = z +
1

λ
Then Tλ has only one fixed point in C ∪ {∞}, namely ∞. In general, for any
parabolic element A the corresponding transformation A(z) has exactly 1 fixed
point. We call these points cusps.

Similarly, we can consider the fixed points of the transformation associated
to the matrix Sλ,µ. We have

Sλ,µ(z) =
λ

µ
z = z

Unless λ = µ, in which case Sλ,µ is the identity, we must have either s = 0 or
s = ∞, so that Sλ,µ has two fixed points. In general any transformation A(z), for
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A an elliptic element, has two fixed points in C∪{∞}. We call these points elliptic
points.

Definition 1.2. Let G be a subgroup of GL2(C). If z is an elliptic point fixed by
an element of G, we call z an elliptic point of G. If z is a cusp fixed by an element
of G, we call z a cusp of G.

For each discrete subgroup Γ of GL2(C) it is often useful to classify all the
cusps and elliptic points of Γ. We begin by analyzing the cusps and elliptic points
of Γ(1).

Lemma 1.3. If z ∈ C ∪ {∞} is an elliptic point of Γ(1), then z is conjugate in Γ(1) to
a primitive n-th root of unity in C, where n = 3 or n = 4 (i.e. there exists an A ∈ Γ(1)

such that A(z) = ±i, e2πi/3.

Proof.

Let z ∈ C ∪ {∞} and suppose there exists an elliptic element of Γ(1) fixing
it. Then A is conjugate in GL2(C) to a diagonal matrix of the form Sλ,µ. Since the
trace of a matrix is not affected by a change of coordinates, we see that tr(A) =

tr(Sλ,µ) = λ+µ. The matrixA has integer entries, so tr(A) = λ+µ ∈ Z. Moreover,
λµ = 1, λ 6= µ, and in particular they cannot be both equal to 1 or -1. It follows that
| tr(A)| = |λ + µ| < 2 ⇒ tr(A) = 0,±1. Therefore the characteristic polynomial of
A is one of:

f1(x) = x2 + 1 f2(x) = x2 ± x+ 1

and therefore A satisfies either f1(A) = 0 or f2(A) = 0.

Case 1:

Suppose f1(A) = 0. Then A4 = I2, but since A ≡ −A in Γ(1) and we are
assuming that A 6= I2, we must have that A2 = 1. Now, as a 2x2 matrix with
integer coefficients, A has a natural action on the free module Z2. Including
the action of integer scalar matrices, which are compatible with A, we get
an action of Z[A] on Z2. Since Z[A] is isomorphic to the ring of Gaussian
integers Z[i], we can define an archimedean absolute value on Z[A] such
that, if v ∈ Z2 is such that (n + mA)v = 0, we have |(n + mA)||v| = 0 ⇒
|(n2 +m2)||v| = 0 ⇒ |v| = v = 0. Therefore Z2 is a free Z[A] module of rank
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1 and since Z[i] is a PID we get Z2 = Z[A]u for some u ∈ Z2. Now, since u
and v = Au are linearly independent over Z, they form a basis for Z2 over
Z. Therefore the matrix [u v] is invertible over Z and hence it must have
determinant ±1. Appling A to it we see that:

A[u v] = [u v]

(
0 −1

1 0

)

If det[u v] = 1, then A is conjugate in SL2(Z) to D =

(
0 −1

1 0

)
via [u v] itself. Otherwise, if det[u v] = −1, then det[v u] = 1 and A is

conjugate in SL2(Z) to D′ =

(
0 1

−1 0

)
via [v u]. Since D ≡ D′ in Γ(1), we

see that A is always conjugate to D via an element of Γ(1), call it Q. Then, if
z is a fixed point of A, we have

A(z) = QDQ−1(z) ⇒
z = Q ◦D ◦Q−1(z) ⇒

Q−1(z) = D ◦Q−1(z)

and therefore Q−1(z) is a fixed point of D. In other words, z is conjugate in
Γ(1) to a fixed point of D, i.e. ±i, a primitive 4-th root of unity.

Case 2:

If f2(A) = 0, then A6 = I2 and since A 6= ±I2 we must have A3 = I2 with
A primitive. In this case Z[A] is isomorphic to Z[e2πi/3] (choosing the root
with positive imaginary part), again a PID with an archimedean absolute
value, and we can proceed as before. Again Z2 = Z[A]u for some u ∈ Z2,
and u, v = Au form a basis for Z2 over Z. We have

A[u v] = [u v]

(
0 −1

1 −1

)

if det[u v] = 1 or

A[v u] = [v u]

(
−1 1

−1 0

)
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if det[u v] = −1. Therefore z is conjugate in Γ(1) either to a fixed point of(
0 −1

1 −1

)
or to a fixed point of

(
−1 1

−1 0

)
i.e. to either e2πi/3 or e4πi/3,

which are both primitive 3-rd roots of unity.

Lemma 1.3 shows that there are only two types of elliptic points in C∪{∞}:
those fixed by a matrix A ∈ Γ(1) such that A2 ≡ I2 in Γ(1) and those with A3 = I2.
Sometimes we will refer to the first family as points of order 2 and to the second as
points of order 3.

The determination of the cusps of Γ(1) is more straightforward:

Lemma 1.4. Let S be the set of cusps of Γ(1). Then S = P1(Q) = Q ∪ {∞}.

Proof.

We see that T1:

T1 =

(
1 1

0 1

)
leaves ∞ fixed, therefore ∞ ∈ S.

Let now A be any parabolic element of Γ(1). Then if s is the fixed point of
A(z), it must satisfy

A(s) =
as+ b

cs+ d
= s

which implies
cs2 + s(d− a)− b = 0

In other words, s satisfies a polynomial with integer coefficients. If c = 0, then
s = ∞ again (since then a = d = ±1). Otherwise, we know A has only one fixed
point, since A is parabolic, and therefore the discriminant of the polynomial must
vanish. In other words, s ∈ Q.

On the other hand, let r = p/q ∈ Q. Since gcd(p, q) = 1, we can find integers
a, b such that ap+ bq = 1. Let now

A =

(
p −b
q a

)
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then A(∞) = limz→∞A(z) = p/q = r. In particular, the parabolic element B =

AT1A
−1 fixes r. Therefore S = P1(Q).

Remark 1.5. Note that during the proof of Lemma 1.4 we have also shown that
every cusp of Γ(1) is in the orbit of ∞.

Going back to our compactification of Y (1), we see from Remark 1.5 that
adding infinity to Y (1) also requires adding Q. Consider then the set Ĥ = H∪Q∪
{∞} and let X(1) = Γ(1)\Ĥ. We define a topology on X(1) by specifying a base
of neighborhoods as follows:

(i) For any z ∈ H, an open neighborhood of z ∈ X(1) is simply an open neigh-
borhood of z ∈ Y (1) viewed as a subset of X(1).

(ii) For z ∈ Q, let Uε = {w ∈ H : |w − (z + iε)| < ε} ∪ {z}, for any ε ∈ R>0. In
other words, Uε is the interior of the circle of radius ε tangent to the real axis
at z union z.

(iii) For z = ∞, let Vε = {w ∈ H : =[w] > ε} ∪ {∞} for any ε ∈ R>0.

Using the fact that Y (1) is already Hausdorff, it is easy to see that X(1) is
Hausdorff as well (one needs only to check separability at the cusps). To check
that X(1) is compact, we want to identify first a set of representatives for X(1)

inside Ĥ (a so called fundamental region) which gives a picture of what X(1) looks
like.

Proposition 1.6. Γ(1) is generated by the two elements

T =

(
1 1

0 1

)
S =

(
1 0

0 −1

)

Proof.

For an elementary proof, see [Si2 I.1.6].

By Proposition 1.6, the two transformations

T (z) = z + 1 S(z) =
−1

z
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generate Γ(1). In particular, the orbit of any element z ∈ Ĥ contains all the transla-
tions of its real part by an element of Z. Therefore, to find a set of representatives
for X(1), we can restrict our attention to the strip {z ∈ H : |<[z]| ≤ 1

2
} ∪ {∞}.

Also, by using S, we can always invert an element so it suffices to consider all
those elements z with |z| ≥ 1 (for a rigorous argument, see [Si2 I.2.3]).

Proposition 1.7. X(1) is compact

Proof.

Call F the region given by {z ∈ H : |<[z]| ≤ 1
2
} ∪ {∞} ∩ {|z| ≥ 1} and

consider an open cover
⋃
i∈I Ui of X(1). Denote by φ : Ĥ → X(1) the projection

map. Then
⋃
i∈I φ

−1(Ui) covers Ĥ. One of the φ−1(Ui), say φ−1(Ui1), contains ∞
so that it is of the form Vε = {w ∈ H : =[w] > ε} ∪ {∞} for some ε ∈ R>0. Now
the set F − φ−1(Ui1) is closed and bounded, hence there is a finite sub-collection
φ−1(Ui2), . . . , φ

−1(Uik) of the Ui’s covering it. Therefore φ−1(Ui1), . . . , φ
−1(Uik) cov-

ers all of F . Upon application of φ we see that the Uij cover X(1) and hence X(1)

is compact.

Now that we have a compact Hausdorff (and evidently connected) topo-
logical space the next question is whether there is additional structure on X(1)

that we should consider. It turns out in fact that we can define on this space the
structure of a one-dimensional complex analytic manifold (i.e. a Riemann surface).

Remark 1.8. Studying the theory of modular functions, one can define a map:

j : X(1) → P1(C)

which is an isomorphism of Riemann Surfaces. This gives that X(1) has genus 0.
For details see [Si2 I.3].

1.2 The Modular Curves X0(N)

We know look at the action on Ĥ of discrete subgroups of GL2(C) other than
SL2(Z).
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Consider first the map φN : SL2(Z) → SL2(Z/NZ) given by reducing the co-
efficients of the matrices modulo N , for every positive integer N . It is not imme-
diate at first that this map is surjective, but we can check this fact by elementary
means. If we denote by PC(N) the kernel of this map, we have an exact sequence

0 → PC(N) → SL2(Z)
φN−→ SL2(Z/NZ) → 0

The subgroup PC(N), which is normal in SL2(Z), is called the principal congruence
subgroup of level N. It is explicitly given by:

PC(N) =

{(
a b

c d

)
∈ SL2(Z) : b, c ≡ 0 mod N and a, d ≡ 1 mod N

}

This subgroup is a discrete subgroup of GL2(C) and the exact sequence shows
that it is of finite index inside SL2(Z), since this is just the order of SL2(Z/NZ).
Given the prime factorization of N =

∏
pe, we wish to calculate this quantity.

Proposition 1.9. [SL2(Z) : PC(N)] = N3 ·
∏

p|N(1− p−2)

Proof.

From basic algebra we have

Z/NZ ∼=
∏

(Z/peZ)

GL2(Z/NZ) ∼=
∏

(GL2(Z/peZ))

SL2(Z/NZ) ∼=
∏

(SL2(Z/peZ))

So that in fact it suffices to compute the order of each of the SL2(Z/peZ). In order
to do so, consider first the exact sequence of groups:

1 → X → GL2(Z/peZ) → GL2(Z/pZ) → 1

where X consists of all the elements of GL2(Z/peZ) that are congruent to the
identity matrix in GL2(Z/pZ). In other words, each entry of a matrix in X has to
be in the congruence class of either 0 or 1 modulo p. The index of each congruency
class of p in Z/peZ is exactly pe−1, therefore there are precisely p4(e−1) elements in
X . On the other hand, GL2(Z/pZ) has precisely (p2 − 1)(p2 − p) elements (just by
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checking conditions on ad− bc) and therefore

#GL2(Z/peZ) = #X ·#GL2(Z/pZ)

= p4(e−1)(p2 − p)(p2 − 1)

= p4e(1− p−1)(1− p−2)

Now, since mutiplying a row of a matrix by a unit c multiplies its determinant by
c, we see that the index of SL2(Z/peZ) in GL2(Z/peZ) is precisely the number of
units in Z/peZ, i.e. Φ(pe) = pe(1− p−1) where Φ is Euler’s Phi function. We obtain

SL2(Z/peZ) = p3e(1− p−2)

and therefore by multiplying each factor we get

[SL2(Z) : PC(N)] = N3 ·
∏
p|N

(1− p−2)

as required.

Any subgroup of SL2(Z) containing PC(N) for some N is called a congru-
ence subgroup. In particular, for reasons that will become clear later, we want to
study:

C0(N) =

{(
a b

c d

)
∈ SL2(Z) : c ≡ 0 mod N

}

This subgroup certainly contains PC(N), but it is not normal in SL2(Z) (just
conjugate it by S), and it therefore does not arise naturally as the kernel of a
projection map. We call Γ0(N) the image of C0(N) in the quotient Γ(1). In other
words:

Γ0(N) =

{(
a b

c d

)
∈ Γ(1) : c ≡ 0 mod N

}

We wish to use Proposition 1.9 to compute the index [Γ(1) : Γ0(N)]. We
have:

Proposition 1.10. [Γ(1) : Γ0(N)] = N
∏

p|N(1 + p−1)
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Proof.

First of all, note that since −I2 ∈ Γ0(N) for all N , we have

[Γ(1) : Γ0(N)] = [SL2(Z) : C0(N)]

By the multiplicative property of indices, we also have:

[SL2(Z) : PC(N)] = [SL2(Z) : C0(N)][C0(N) : PC(N)]

and since we know the value of the LHS from Proposition 6, it suffices to compute
the index [C0(N) : PC(N)].

Consider the reduction map φN : SL2(Z) → SL2(Z/NZ). Under this map,
the group C0(N)/PC(N) is mapped onto the subgroup of SL2(Z/NZ) consisting

of matrices of the form

(
a b

0 a−1

)
. Since the number of units in Z/NZ is given

by Φ(N) = N
∏

p|N(1 − p−1), the order of this subgroup is given by NΦ(N) =

N2
∏

p|N(1− p−1). Applying Proposition 6, we have

[SL2(Z) : C0(N)] =
N3
∏

p|N(1− p−2)

N2
∏

p|N(1− p−1)
= N

∏
p|N(1− p−1)(1 + p−1)∏

p|N(1− p−1)
= N

∏
p|N

(1+p−1)

In the future, it will also be useful to compute an explicit set of representa-
tives for Γ(1)/Γ0(N):

Proposition 1.11. Let N > 1 be an integer and consider the set S of all pairs of integers
{c, d} satisfying:

(i) (c, d) = 1

(ii) d | N

(iii) 0 < c ≤ N/d

For each pair {c, d} find a, b such that ad−bc = 1. Then the set T =

{(
a b

c d

)
: {c, d} ∈ S

}
is a set of representatives for Γ(1)/Γ0(N).
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Proof.

It is straightforward to check that every element in T is Γ0(N)-inequivalent.
But now, since there are precisely N/d c’s for each d | N , we get

|T | = N +
N

d1

+ . . .+ 1 = N(
1

d1

+ . . .+
1

N
) = N

∏
p|N

(
1 + p−1

)
= [Γ(1) : Γ0(N)]

and therefore these are all the representatives.

As a subgroup of Γ(1), the congruence subgroup Γ0(N) inherits an action
on the extended upper-half plane Ĥ. The quotient X0(N) = Γ0(N)\Ĥ is again a
Hausdorff space since Γ0(N) is discrete. Moreover, we can check as we have done
for X(1) that this space is compact and that we can put the complex analytic
structure of a Riemann Surface on X0(N). We will call the X0(N) the modular
curves.

In order to compute the genus of X0(N), note that the inclusion Γ0(N) ⊂
Γ(1) gives rise to a holomorphic map of compact Riemann surfaces

π : X0(N) → X(1)

[z] 7−→ [z]

given by simple projection of orbits. For anyN > 1 the map is not constant, hence
surjective of finite degree d. By the Riemann-Hurwitz formula:

2g(X0(N))− 2 = d · (2g(X(1))− 2) +
∑

[z]∈X0(N)

(e[z] − 1)

where e[z] is the ramification index of π at [z]. We know already that g(X(1)) = 0

by Remark 1.8, so in order to compute the genus of X0(N) it suffices to compute
the degree d of π and the various indices of the ramification points.

Proposition 1.12. Let π : X0(N) → X(1) be defined as above. Then

(a) The degree of π is d = [Γ(1) : Γ0(N)].

(b) Fix an s ∈ Ĥ. Define:

Γ(1)s = {A ∈ Γ(1) : A(s) = s}
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and

Γ0(N)s = {A ∈ Γ0(N) : A(s) = s}

Then for every [z] ∈ X0(N), we have e[z] = [Γ(1)z : Γ0(N)z].

Proof.

(a) Let [w] ∈ X0(N) and suppose π([w]) = [z]. If A1, . . . , Ak ∈ Γ(1) is a sytem
of coset representatives for Γ0(N) in Γ(1), then [Ai(w)] 6= [w] in X0(N),
but π([A(w)]) = π([w]) = [z] in X(1). On the other hand, if B is in the
coset Γ0(N)Ai for some i, then A−1

i B ∈ Γ0(N), thus for any [w] ∈ X0(N),
[A−1

i B(w)] = [w] ⇒ [B(w)] = [Ai(w)]. Therefore there are at most [Γ(1) :

Γ0(N)] fibers over [z] ∈ X(1), given by [w1] = [A1(z)], . . . , [wk] = [Ak(z)](note
that one of the Ai’s is the identity). Therefore the map has degree d = [Γ(1) :

Γ0(N)].

(b) Let s ∈ Ĥ be a point which is fixed by some element of Γ(1) (i.e. s is either
a cusp or an elliptic point). Let P ∈ Γ(1)s, but P /∈ Γ0(N)s and suppose that
P ∈ Γ0(N)Ai for some i. Then we saw in part (a) that [P (s)] = [Ai(s)] = [s]

in X0(N), therefore the ramification degree above [s] is at least 2, since this
fiber corresponds to the fiber given by the identity. In fact, we see that
the ramification index of [s] is exactly the number of coset representatives
for Γ0(N)s in Γ(1)s, i.e. [Γ(1)s : Γ0(N)s] (note that Γ0(N)s ⊂ Γ(1)s). In
particular if the point is unramfied, then it is not fixed by anything in Γ(1)

and therefore the formula holds trivially.

Moreover, we have the following:

Proposition 1.13. Let [x] ∈ X(1) and let π−1([x]) = {[w1], . . . , [wh]} ⊂ X0(N). If
wk = Ak(x) with Ak ∈ Γ(1) then e[wk] = [Γ(1)x : A−1

k Γ0(N)Ak ∩ Γ(1)x]. Moreover,
Γ(1) =

⋃h
k=1 Γ0(N)AkΓ(1)x and the union is disjoint (i.e. h = #Γ0(N)\Γ(1)/Γ(1)x).

Proof.
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Suppose B ∈ Γ(1)wk
and C ∈ Γ(1)x. Then

B(wk) = BAk(x) = Ak(x) = AkC(x)

and therefore B(x) = AkCA
−1
k (x) for infinitely many x ∈ Ĥ. Since this space is

compact and both functions are holomorphic on all of Ĥ, they must agree every-
where and therefore B ∈ AkΓ(1)xA

−1
k . Similarly, for any C ∈ Γ(1)x,

AkCA
−1
k (wk) = A−1

k C(x) = Ak(x) = wk

and therefore AkCA−1
k ∈ Γ(1)wk

. This shows that Γ(1)wk
= AkΓ(1)xA

−1
k and there-

fore Γ0(N)wk
= Γ0(N) ∩ AkΓ(1)xA

−1
k . Applying Proposition 1.12(b):

e[wk] = [Γ(1)wk
: Γ0(N)wk

] = [Γ(1)x : A−1
k Γ0(N)Ak ∩ Γ(1)x]

For the second statement, let C ∈ Γ(1). Then [C(x)] in X0(N) is equivalent to
one of the [wk]’s, since [C(x)] = [x] in X(1). Therefore there exists a D ∈ Γ0(N)

such that C(x) = D(wk) = DAk(x). Then C−1DAk fixes x so C−1DAk ∈ Γ(1)x.
This proves that Γ(1) =

⋃h
k=1 Γ0(N)AkΓ(1)x. Now if E ∈ Γ0(N)AkΓ(1)x, then

[E(x)] = [wk] and therefore the union is disjoint.

By Remark 1.5 we know that there is only 1 Γ(1)-inequivalent cusp on X(1),
namely [∞], and two elliptic points, namely [i] and [e2πi/3], of order 2 and 3 re-
spectively. Suppose [wk] lies above, say, [i] ∈ X(1). Then there exists a Ak ∈ Γ(1)

such that Ak(i) = wk. By Proposition 1.13, e[wk] = [Γ(1)i : A−1
k Γ0(N)Ak ∩ Γ(1)i].

Now, Γ(1)i is isomorphic to the roots of the polynomial x2 + 1 = 0 modulo ±1,
hence it is cyclic of order 2. Therefore e[wk] = 1, 2, depending on the conjugacy
class of A−1

k Γ0(N)Ak. If [wk] lies above [e2πi/3] instead, then a similar argument
shows that Γ(1)e2πi/3 is cyclic of order 3, and therefore e[wk] = 1, 3.

If [wk] lies above [∞], then the situation is slightly different. Since Γ(1)∞ ={(
1 m

0 1

)
: m ∈ Z

}
is infinite, and e[wk] = [Γ(1)∞ : A−1

k Γ0(N)Ak ∩ Γ(1)∞] must

be finite, we must have that A−1
k Γ0(N)Ak ∩ Γ(1)∞ is infinite as well. In other

words, there is a nontrivial element A−1
k BAk with B ∈ Γ0(N) such that:

A−1
k BAk(∞) = ∞⇒ BAk(∞)) = Ak(∞) ⇒ B(wk) = wk

and therefore wk is always fixed by an element of Γ0(N).
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Remark 1.14. Now we have a complete picture of the ramification of π : X0(N) →
X(1): if [z] ∈ X(1) and z is neither a cusp or an elliptic point, then Γ(1)z = {I2}
and e[wk] = 1 for each point of X0(N) lying above [z]. If z is an elliptic point, and
[wk] lies above [z], then we have two cases: either A−1

k Γ0(N)Ak ∩ Γ(1)z is trivial
and e[wk] = 2, 3 , in which case we deduce that there is no B ∈ Γ0(N) fixing wk,
or A−1

k Γ0(N)Ak ∩ Γ(1)z = Γ(1)z and e[wk] = 1, in which case there is a B ∈ Γ0(N)

fixing wk. In the latter case, by analogy we call wk a elliptic point of order 2 (or 3)(of
X0(N)) depending on whetherB is of order 2 (or 3). Similarly, we say that a point
wk is a cusp(of X0(N)) if there exists an element P ∈ Γ0(N) such that P (wk) = wk.
Note that the discussion in the previous paragraph showed that, as opposed to
the case with elliptic points, every point of X0(N) lying above [∞] is a cusp, and
these are all the Γ0(N)-inequivalent cusps of X0(N).

Define now the following constants:

µ = [Γ(1) : Γ0(N)]

ν2 = number of Γ0(N)-inequivalent elliptic points of order 2

ν3 = number of Γ0(N)-inequivalent elliptic points of order 3

ν∞ = number of Γ0(N)-inequivalent cusps

Then we can derive a formula for the genus ofX0(N) in terms of µ, ν2, ν3, ν∞:

Proposition 1.15. Let N > 1. Then the genus of X0(N) is given by:

g(X0(N)) = 1 +
µ

12
− ν2

4
− ν3

3
− ν∞

2

Proof.

Let e1, . . . , eh be the ramification indices of the points of X0(N) lying above
the elliptic point [e2πi/3] of X(1). We have µ = e1 + . . . eh and ei = 1 if the point
is an elliptic point of order 3, and ei = 3 otherwise. The number of i’s for which
ei = 1 is therefore equal to ν3. Let ν ′3 be such that h = ν3 + ν ′3. Then µ = ν3 + 3ν ′3
and therefore

h∑
i=1

(ei − 1) = µ− h = 2ν ′3 = 2(µ− ν3)/3



18 CHAPTER I. MODULAR CURVES

Similarly, for the points lying above [i] we have

h∑
i=1

(ei − 1) = (µ− ν2)/2

Now, the points lying above [∞] are all the Γ0(N)-inequivalent cusps, and there-
fore h = ν∞ which gives:

h∑
i=1

(ei − 1) = µ− ν∞

Applying the Riemann-Hurwitz formula:

2g(X0(N))− 2 = d · (2g(X(1))− 2) +
∑

[z]∈X0(N)

(e[z] − 1)

with g(X(1)) = 0 we obtain:

2g(X0(N))− 2 = −2µ+
(µ− ν2)

2
+

2(µ− ν3)

3
+ (µ− ν∞)

and therefore

g(X0(N)) = −µ+
(µ− ν2)

4
+

2(µ− ν3)

6
+
µ− ν∞

2
+ 1

= 1 +
µ

12
− ν2

4
− ν3

3
− ν∞

2

Since we know the value of µ from Proposition 1.10, in order to compute the
genus of X0(N) in terms of N , it remains to compute the constants v2, v3, v∞. This
is done below:

Proposition 1.16. Let N > 1 be an integer and let ν∞, ν2, ν3 denote the set of Γ0(N)-
inequivalent cusps, elliptic points of order 3, elliptic points of order 3 respectively. If
N = pe11 · · · p

ek
k is the prime factorization of N , then:

(a) ν∞ =
∑

d|N,d>0 Φ((d,N/d))

(b) ν3 =

{
0 if 9 | N∏k

i=1

(
1 +

(
−3
pi

))
otherwise
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(c) ν2 =

{
0 if 4 | N∏k

i=1

(
1 +

(
−1
pi

))
otherwise

Where Φ is Euler’s function and
(
·
p

)
is the Legendre symbol, so that, for any prime p,

(
−1

p

)
=


0 if p = 2

1 if p ≡ 1 mod 4

−1 if p ≡ 3 mod 4(
−3

p

)
=


0 if p = 3

1 if p ≡ 1 mod 3

−1 if p ≡ 2 mod 3

Proof.

(a) By Proposition 1.13, ν∞ = #Γ0(N)\Γ(1)/Γ(1)x for any cusp x ∈ Ĥ. We know
by Proposition 1.11 that a set of representatives for Γ0(N) inside Γ(1) can be
given as follows. Take a pair of integers (c, d), (c, d) = 1, d | N , and find
integers a, b such that ad − bc = 1. As d runs through the divisors of N ,

and 0 < c ≤ N/d, the matrices

(
a b

c d

)
are going to give a complete set of

representatives for Γ0(N) inside Γ(1). Take now any cusp in Γ(1), say 0. A

generator for Γ(1)0 is given by

(
1 0

1 1

)
and therefore two elements A, A′

of Γ0(N)/Γ(1) are equivalent under Γ(1)0 if and only if they satisfy

A′ = A

(
1 0

m 1

)
which happens exactly when d = d′ and c′ = c + dm, for some m > 0. Fix a
d, a divisor of N . By the above, we can always replace c by a residue mod d.
Since (c, d) = 1, this means that we can replace c by an element of (Z/(d))∗.
But c was an element of Z/(N/d) in the first place, therefore c can be taken
as an element of (Z/(d,N/d))∗. There are exactly φ((d,N/d)) elements in this
group for each d and therefore

ν∞ =
∑

d|N,d>0

Φ((d,N/d))
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as required.

(b) Suppose [wk] lies above [ζ = e2πi/3], so that there exists an Ak ∈ Γ(1) such
that Ak(ζ) = wk. Suppose further that [wk] is an elliptic point of order 3, i.e.
there exists a B ∈ Γ0(N) such that B(wk) = wk. Then A−1

k BA fixes ζ and
therefore it must be one of:

D =

(
0 −1

1 −1

)
D2 =

(
−1 1

−1 0

)

In other words, Γ0(N)wk
= {I2, B,B2}. Suppose that B is conjugate to, say,

D. Now, let B′ ∈ Γ0(N) be such that B′(w) = w for some w which is Γ0(N)-
equivalent to wk. Let C be such that C(wk) = w. Since D and D2 fix the
same elements, suppose without loss of generality that C is conjugate to D.
Then C−1B′C fixes wk, so it must be in Γ0(N)wk

, i.e. it must be either B or
B2. But it cannot be B2, for otherwise we could conjugate D with D2 in
Γ(1), which is impossible. On the other hand, suppose that C = M−1BM in
Γ0(N). Then C fixes M−1(wk), which is equivalent to wk in X0(N).

If we denote by S1 the set of all the B ∈ Γ0(N) which are conjugate in Γ(1)

to D (resp. S2 be the set of all the B’s conjugate to D2). Then what we just
showed is that ν3 is precisely the number of conjugacy classes of elements of
S1 (resp. S2). In order to compute this number, we will put it in a bijection
with a certain class of ideals in the ring Z[ζ] as follows.

For any B ∈ S1 ∪ S2, we have an action of Z[B] on

L = Z2 = {(x, y) : x, y ∈ Z} and LN = {(x,Ny) ∈ L : x, y ∈ Z}

that turns them into Z[B]-modules. Note in particular that

Γ0(N) = {A ∈ Γ(1) : ALN = LN}

Now, Z[B] is isomorphic to A = Z[ζ], and since A is a PID there exists an
isomorphism (of Z-modules) f : A → L such that f(ζx) = Bf(x) for all x ∈
A (just map (ζ) to (B)). On the other hand, the set T of all Z-isomorphisms
between A and L is the disjoint union of

Ti = {f ∈ T : f(ζx) = Bf(x) B ∈ Si}, i = 1, 2.
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Note moreover that if α ∈ M2(Z) has det(α) = −1, then f ∈ T1 ⇔ αf ∈ T2.
Now pick any f : A → L ∈ T1 and consider the set I = f−1(LN) ⊂ A.
Suppose that B ∈ Γ0(N) and that it satisfies f(ζx) = Bf(x) for all x ∈ A.
We want to show that in this case I is an ideal ofA. Closure under addition
is obvious. Let i ∈ I and x = a+ bζ ∈ A. Then

f(ix) = f(ia+ ibζ) = af(i) + bBf(i) ∈ LN

sinceB fixes LN . Conversely, it is clear that if I is an ideal ofA, thenB must
fix LN . Therefore I is an ideal of A if and only if B ∈ Γ0(N). Moreover,
A/I ∼= L/LN ∼= Z/NZ, which implies that

(i) NQ(ζ)/Q(I) = N

(ii) I is not contained in any rational integer other than 1.

Note that (i) is true by definition and (ii) because otherwise the residue of
A/I would not be cyclic. On the other hand, any such ideal of A is such
that A/I isomorphic to L/LN and therefore we can always find an element
f ∈ T such that f(I) = LN . We can also assume f ∈ T1, for we can always
multiply it by a matrix α with determinant -1 to get αf ∈ T2. We therefore
obtain an element B ∈ S1 ∩ Γ0(N) by letting B be the generator of (f(ζ))

(note that we are using the fact that A is a PID). We want to show that this
correspondence between ideals I ⊂ A satisfying (i) and (ii) and conjugacy
classes of elements of S1 ∩ Γ0(N) in Γ0(N) is one-to-one.

Suppose first that for the same ideal I we find two isomorphisms f, f ′ ∈ T1

with (f(ζ)) = (B) and (f ′(ζ)) = (B′). Since f, f ′ are isomorphisms, inverses
are defined and f ◦ f−1 is a well-defined automorphism of L. Therefore
f ◦ f−1 ∈ SL2(Z) and in particular we can find an element γ ∈ Γ(1) such
that f ′ = γf . Then B = γ−1B′γ. Moreover, since f ◦ f−1(LN) = γ(LN) =

LN , γ is actually in Γ0(N) and B is conjugate to B′ in Γ0(N). Conversely,
suppose that we have two different ideals I and J satisfying properties (i)
and (ii). Select isomorphisms f ,f ′ ∈ T1 such that f(I) = LN and f ′(J ) = LN

with (f(ζ)) = (B) and (f(ζ)) = (B′). Suppose moreover that B = γ−1Bγ,
γ ∈ Γ0(N). Let h = f−1γf ′. This is a well-defined automorphism of A with
(h(ζ)) = (ζ). In particular, h is just multiplication by a unit λ ∈ A×. But then
I = f−1(LN) = f−1(γLN) = f−1(γ(f ′(J ))) = λJ = J .
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Now that we have established a bijection between ideals I ⊂ A satisfy-
ing (i) and (ii) and conjugacy classes in Γ0(N) of elements of S1 ∩ Γ0(N),
it remains to compute how many such ideals are there. That number will
be ν3. Suppose I = (a + bζ) ⊂ A satisfies properties (i) and (ii). Then
NQ(ζ)/Q(I) = (a + bζ)(a + bζ2) = N . Factor (N) into prime ideals of A as
(N) = P e1

1 · · ·P ek
k . If Pi is a rational prime, then Pi ⊃ (a+ bζ) = I which vio-

lates property (ii). Therefore all the Pi’s are primes of Z[ζ] lying above a ra-
tional prime that splits or that ramifies. Since primes that split come in con-
jugate pairs in any factorization of a rational integer, and the only prime that
ramifies inA is 3, we can actually write (N) = πe ·P e1

1 · · ·P er
r ·σ(P1)

e1 ·σ(Pr)
er

where σ is the usual conjugation in C and (π)2 = 3. Suppose first e = 0.
By letting I = P e1

1 · · ·P er
r , we obtain an ideal of the desired form. But the

ideal will change if we switch an ideal Pi for its conjugate σ(Pi). Each spot
i = 1, . . . r can either be taken by a prime Pj or by its conjugate, each time
giving a different ideal I. Therefore there are 2r possiblities, where r is the
number of primes dividing N that split. A prime p | N splits in Z[ζ] if and
only if the Legendre symbol −3

p
is 1, and therefore we get the desired for-

mula. If e = 2, then 3 | N and no higher powers of 3 do. But conjugation
does not change π so its presence in the factorization of N does not affect
the total number of ways of writing an I. The formula takes it into account
by letting the Legendre symbol of 3 be 0. Note however that if 9 | N then
we have to put at least two powers of π inside I and that is not possible for
then (3) ⊃ I. Similarly, if p | N does not split, then there are no ideals of the
required form, since all the I manufactured as above will be contained in
(p). Since for these primes the Legendre symbol is -1, the formula also takes
into account their effect.

(c) Proceed as before, by letting A = Z[i]. Note that in this ring the only prime
that ramifies is 2, and a prime splits if and only if

(
−1
p

)
= 1.

We derive a few simple but meaningful Corollaries:

Corollary 1.17. Let N be a prime. Then the only cusps of X0(N) are [0] and [∞].
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Proof.

First of all, we claim that if N > 1, then the two points [0], [∞] are in-
equivalent cusps in X0(N). It is clear that they are cusps, for ∞ is fixed by(

1 1

0 1

)
∈ Γ0(N) and 0 is fixed by

(
1 0

N 1

)
∈ Γ0(N). Suppose that they are

equivalent in Γ0(N). Then there exists a matrix A =

(
a b

cN d

)
∈ Γ0(N) such

that fA(∞) = 0 ⇒ a/cN = 0 ⇒ a = 0. Then | detA| = |bcN | = 1 but this is
impossible since b, c are integers and N > 1. Now, from Proposition 1.16 we have
that,for N prime,

ν∞ =
∑

d|N,d>0

Φ((d,N/d)) = Φ((1, N)) + Φ((N, 1)) = 2Φ(1) = 2

and therefore [0] and [∞] are the only cusps.

Corollary 1.18. Let N be a prime number. Then g(X0(N)) = 0 if and only if N =

2, 3, 5, 7, 13.

Proof.

For any prime N , we have that µ = N
∏

p|N(1 + p−1) = N + 1 by Proposition
1.10 and that ν∞ = 2 by Corollary 1.17. If we also plug g = 0 in the formula of
Proposition 1.15, we get that:

N = 3ν2 + 4ν3 − 1

Now, by direct computation, we can check that g(X0(N)) = 0 for N = 2 and
N = 3. For any other prime N , note that N must be congruent to one of 1, 5, 7, 11

modulo 12. The first case yields N = 13, the second N = 5, the third N = 7 and
the fourth N = −1, which we discard.

2 Connection with Elliptic Curves

Now that we have familiarized ourselves with the structure of the modular curves
X0(N), we are going to look at some of their maps, and their connection with the
theory of elliptic curves.
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We outline first the point of view of modular curves as moduli spaces for
elliptic curves. Then, we describe the involution map wN and the Hecke corre-
spondences T` defined on X0(N) and their connection with the theory of elliptic
curves.

From now on, we will assume that N is prime, since it will be the only case
studied in the proof of Mazur’s Theorem.

2.1 Modular Interpretation of X0(N)

Recall from the Uniformization Theorem for elliptic curves that for any lattice
Λ ∈ C there exists a biholomorphic isomorphism:

C/Λ → EΛ

z 7−→ (℘(z,Λ), ℘′(z,Λ))

where EΛ is an elliptic curve and ℘ is the Weierstrass function. If EΛ′ is another
such curve with associated lattice Λ′ and φ : EΛ → EΛ′ is an isomorphism, then
φ induces an isomorphism φ̃ : Λ → Λ′ which is just multiplication by a constant
α ∈ C×. Denoting by L the set of all lattices in C and by E the set of all elliptic
curves over C, we have a bijection:

L/C× → E/ ∼

Pick a basis ω1, ω2 for Λ. We indicate this by Λ = 〈ω1, ω2〉. Then a representative
for the the coset of Λ inside L/C× is given by letting τ = ω1/ω2 in such a way that
=[τ ] > 0. In other words, we have a surjection:

H → L/C×

τ 7−→ 〈τ, 1〉

From which we derive the following:

Proposition 2.1. There is a bijection

Y (1) → L/C×
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Proof.

Suppose τ, τ ′ map to Λ, Λ′ respectively, with αΛ = Λ′. Then τ ′ = aατ + bα

and 1 = cατ + dα. Thus
τ ′ =

aτ + b

cτ + d

for some A =

(
a b

c d

)
∈ Γ(1). On the other hand, suppose τ ′ = Aτ for some

A ∈ Γ(1). Let α = cτ + d. Then

αΛ′ = 〈c+ dτ, a+ bτ〉 = Λ

and therefore Λ ≡ Λ′ in L/C×. We therefore have a bijection:

Y (1) = Γ(1)\H → L/C×

Composing with the bijection given by the Uniformization Theorem, we
see that points in Y (1) correspond bijectively to isomorphism classes of elliptic
curves over C. Note in particular that the elliptic points [i] and [e2πi/3] correspond
to isomorphism of classes of ellipitic curves with complex multiplication by the
rings Z[i] and Z[e2πi/3], respectively.

There is a way to extend this bijection to all of X(1) by making the cusps
[∞] ∪ Q correspond to particular objects called ’generalized elliptic curves’. A
discussion of this topic here would take us off track (though see [Del]), but it is
enough to say that in this way we can extend the bijection

j : E/ ∼→ C

given by the j-invariant to an isomorphism of Riemann surfaces

j : X(1) → P1

giving again the result that X(1) has genus 0, a fact which was proven earlier
giving an informal proof.

Remark 2.2. It turns out that the function j(τ) generates the field of rational func-
tions of X(1) over C. For details, see [Si2 I.4].
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Definition 2.3. Denote by (E,H) the pair given by an elliptic curve and a sub-
group H of E cyclic of order N . Two pairs (E ′, H ′) are isomorphic if there is an
isomorphism E → E ′ carrying H → H ′.

Proposition 2.4. Two pairs (EΛ, H) and (EΛ′ , H ′ of elliptic curves over C are isomorphic
if and only if there exists an element A ∈ Γ0(N) such that AΛ = Λ′.

Proof.

Suppose that (EΛ, H) is given by the lattice Λ = 〈τ, 1〉 and the cyclic sub-
groupH of orderN is given by 〈1/N〉, without loss of generality. Suppose further
that Λ′ = 〈τ ′, 1〉 and H ′ = 〈1/N〉. If (EΛ, H) is isomorphic to (EΛ′ , H) then there
exists a α ∈ C× such that αΛ = Λ′. In other words, there is an element A ∈ Γ(1)

such that:

ατ = aτ ′ + b

α · 1 = cτ ′ + d

In particular, α · 1/N = c/Nτ ′ + d/N must be contained in 〈1/N〉, since H
must map to H ′. This can only happen if c ≡ 0(N).

On the other hand, suppose that there exists andA ∈ Γ0(N) such thatA(τ) =

τ ′. Then the group 〈1/N〉 maps to 〈c/N + d/N〉, which is cyclic of order N , since
c | N .

In other words, we have a bijection:

Y0(N) −→ {E ∈ E/ ∼: H ⊂ E is cyclic of order N}

We refer to Y0(N) as the moduli space of all elliptic curves defined over C
containing a cyclic subgroup of order N . Similarly, X(1) is a moduli space for the
space of all elliptic curves defined over C. We will refer to these interpretations
of X0(N) and X(1) as the modular interpretation.

Remark 2.5. Similar to the j(τ) function forX(1), we have a function jN(τ) = j(τ)

such that the function field of X0(N) over C is precisely C(j, jN).
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2.2 The involution wN

Let E be an elliptic curve over C with a cyclic subgroup H of order N . By [Si1
III.4.13] there exists an elliptic curve E ′ defined over C and an isogeny (of degree
N ) φ : E → E ′ such that ker(φ) = H . The group structure of E ′ is given by
E ′ ∼= E/H . By [Si1 III.6.1] we can also find an isogeny φ̂ : E ′ → E (of degree N )
such that φ̂ ◦ φ = [N ]. Since nonconstant isogenies are surjective, it follows that

ker(φ̂) ∼= H ′ ⊂ E[N ] ∼= Z/NZ× Z/NZ

Where H ′ is of order N , and the inclusion is proper. H ′ ⊂ E ′ is cyclic of order N .
Using the modular interpretation, the dual isogeny gives a well defined bijection:

wN : Y0(N) → Y0(N)

(E,H) 7−→ (E ′ = E/H,H ′ = E[N ]/H)

which is in fact a morphism of varieties. Note that since ˆ̂
φ = φ, wN is of order 2,

hence the term ’involution’.

We can in fact calulate an explicit formula for wN :

wN : Y0(N) −→ Y0(N)

[z] 7−→
[
−1

Nz

]

This is easily seen by writing the ’modular’ formula in terms of lattices.
Specifically, if E ∼= C/〈1, τ〉 and H is the subgroup 〈1/N〉 then E maps to

E/H = C/〈 1

N
, τ〉 = C/〈1, 1

τN
〉

However, =[ 1
τN

] < 0 so we want to take the equivalent latticeE ′ = C/〈1, −1
τN
〉

to stick to our convetion that τ ∈ Ĥ. Note in particular that this formula can be
extended to the cusps to define an involution

wN : X0(N) −→ X0(N)

In particular, we have:
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Proposition 2.6. wN([0]) = [∞] and wN([∞]) = [0], so that wN interchanges the cusps
of X0(N).

Proof.

This is clear from the formula [z] 7→
[−1
Nz

]
.

Remark 2.7. If N = N1N2 is a product of primes, then one can work out a similar
definition

wN1(E,H) = (E/HN1 , (H + E[N1])/HN1)

where HN1 denotes the unique subgroup of H of order N1.

2.3 Hecke Correspondences

Let ` be any prime number such that ` 6= N . Consider a pair (E,H) of an elliptic
curve defined over C and a cyclic subgroup of order N`. By the Sylow theo-
rems, H contains a unique cyclic subgroup of order N , call it HN (recall our tacit
assumption that N is prime). We have a well-defined map

πN,` : Y0(N`) → Y0(N)

(E,H) → (E,HN)

On the other hand, H also contains a unique subgroup of order `, call it H`. By
Remark 2.7 we have

w`(E,H) = (E/H`, (H + E[`])/H`)

Note that the curve E/H` contains a group (HN +H`)/H` of order N , since HN ∩
H` = ∅. Applying πN,` to E/H` we get:

πN,` ◦ w`(E,H) = (E/H`, (HN +H`)/H`)

We have the following diagram:

Y0(N`)

Y0(N) ................................-
�

π `

Y0(N)

π̀
◦ w

`-
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which suggests the following correspondence on Y0(N). Let [z] = (E,HN) be
a point of Y0(N). For each subgroup H i

` of E, we can consider the point [zi] =

(E,H i
`HN) lying above it in Y0(N`). On the other hand, we can map each of the

[zi] down to Y0(N) using πN,` ◦ w`. We define

T`(z) =
∑
i

πN,` ◦ w`(zi)

=
∑
i

(E/H i
`, (HN +H i

`)/H
i
`)

where the sum runs through all the subgroups of E of order `. If E corresponds
to a lattice Λ ⊂ C, then this number is precisely the number of sublattices of Λ of
index `, which is ` + 1. Therefore T` sends a point [z] ∈ Y0(N) to a (formal) sum
of `+ 1 points in Y0(N).

It can be shown by looking at what happens to the lattices that the action of
T` is given explicitly on Y0(N) by the formula:

T`([z]) = `[z] +
`−1∑
j=0

[
z + j

`

]
(I.1)

which again can be extended to the cusps of X0(N) to obtain a correspondence:

T` : X0(N) → X0(N)

for each ` 6= N . We call these correspondences Hecke operators. The reader is
warned that although z represents a complex number, the summation in (1) is by
no means related to the summation of points in C. It is just a formal sum of points
of X0(N). In particular, we have

Proposition 2.8.

(a) T`([∞]) = (`+ 1)[∞]

(b) T`[0] = (`+ 1)[0]

Proof.

(a) Obvious from (1).
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(b) Note that gcd(N, `) = 1 so we can find integers a, b such that a` − bN = 1.
Then, the transformations

Aj(z) =
az + j

bNz + `

are in Γ0(N) for all j = 1, . . . , j − 1 and Aj(0) = j/`, which shows that the
cusps [j/`] are all equivalent to [0] in X0(N).

We have only defined T` for ` a prime, but an anlogous definition can be
made for any positive integer n. We will not get into a detailed derivation of the
formulas for Tn, n any integer, but we limit ourselves to note the following:

Proposition 2.9. Let n,m be positive integers such that (n,m) = 1. Then TnTm = Tnm

Proof. See [Si I.9.1]



Chapter II

The Eisenstein Ideal

In the previous chapter we gave a geometric construction of the modular curves
X0(N) over C and we studied some of their general properties. We also men-
tioned (Remark 2.5) that X0(N)/C can also be characterized as the curve with
function field equal to C(j, jN). The advantage of this construction is that it can
be used to construct curves X0(N)/Q characterized by the fact that their function
field is Q(j, jN). Since in this chapter we will be mainly interested in questions of
Q-rationality, all of our constructions (including the curves X0(N)) will be done
over Q. The interested reader may refer to [Roh] for explanations of these con-
structions.

A central part of Mazur’s argument is to prove that the curve X0(N)(Q)

has finitely many points. In this chapter we describe how this is done, following
the outline given in [MaSe] though we will refer to [Maz] for the more technical
points.

The general plan is to project X0(N)(Q) onto a certain abelian variety J(Q)

via a finite map, and then show that the group J(Q) is finite. We have divided
the proof in three secions: first, we build up the definition of J and describe some
of its structure; second, we describe the notion of p-admissible filtrations and
show how to bound the size of certain cohomology groups using them; third, we
apply the method of descent to show finiteness of J(Q), from which finiteness of
X0(N)(Q) immediately follows.

The theorem we are trying to prove requires a deep understanding of scheme

31
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theoretic tools such as group schemes, Néron models and flat cohomology. We
could have inserted here a brief introduction to these topics, but nobody would
have benefited from it. It would have been too short of an introduction for the be-
ginner to gain an understanding of these objects, and boring for the experienced
reader who has already mastered the subject. Wherever it was possible, we have
attempted to translate the proofs in a simpler language, and we hope the ad-
vanced reader will forgive us if at times this language seems imprecise. Where
it was not possible, we have stated the result needed and we have required the
reader to either take a leap of faith or to check the reference we give for the proof.

Throughout the chapter, we will be assuming that N is a prime. Moreover
we are assuming that g(X0(N)) > 0, so that N 6= 2, 3, 5, 7, 13 by Corollary I.1.18.

1 The Eisenstein Quotient

We are going to define a certain abelian variety J0(N) in which X0(N) embeds,
and then describe one of its quotients J , called by Mazur the Eisenstein Quotient.
This roughly corresponds to sections II.6-7, and II.10 of [Maz].

1.1 The Jacobian Variety J0(N)

Let C be a nonsingular projective curve of genus g over an algebraically closed
field k. Recall from [Si1 II.3] that by a divisor on C we mean a formal sum

D =
∑
P∈C

nP [P ]

where the nP ’s are integers only finitely many of which are nonzero. The set of
all such sums forms a free abelian group which we denote by Div(C). There is a
group homomorphism between Div(C) and Z given by

deg(D) =
∑
P∈C

nP

where the sum takes place in Z. We let Div0(C) be the kernel of this map (the
degree zero divisors). For any rational function f ∈ k(C) (the function field of C)
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we can define a divisor by the formula

div(f) =
∑
P∈C

ordf (P )[P ]

where by ordf (P ) we just mean the order of vanishing of f at P . We call such di-
visors principal divisors. Note that principal divisors form a subgroup of Div0(C),
by [Si1 II.3.7], since every principal divisor is of degree 0. However, the converse
is not true whenever g > 0, and the discrepancy is measured by the group:

Pic0(C) = Div0(C)/principal divisors

which injects into the larger group

Pic(C) = Div(C)/principal divisors

In other words, we have an exact sequence of abelian groups:

0 → Pic0(C) → Pic(C) → Z → 0

which is the analogous for curves of the ideal class group exact sequence in the
study of number fields.

For each point P ∈ C, we can consider its image [P ] in the group Pic0(C),
whenever this is nontrivial (i.e. g > 0). If C is an elliptic curve (i.e. g=1), we know
this map is actually a bijection ([Si1 III.3.4]) given by P 7→ [P ] − [O], which is an
isomorphism between Pic0(C) and the group formed by the points of C. But for
curves of higher genus the Riemann-Roch theorem tells us that Pic0(C) is much
larger than C, and we cannot possibly hope to construct such an isomorphism, let
alone a bijection. The idea, however, is to define an abelian variety of dimension g
(i.e. a variety with morphisms defining an abelian group on the points) in which
C embeds, and whose corresponding group is isomorphic to Pic0(C).

Proposition 1.1. Let C be a nonsingular projective curve of genus g defined over an
algebraically closed field.

(a) There exists an abelian variety Jac(C) of dimension g such that there is an isomor-
phism of groups:

Pic0(C)
∼=−→ Jac(C)

We call Jac(C) the Jacobian of C.
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(b) There is an embedding C ↪→ Jac(C).

Proof.

(a) Since the methods of proof of this statement do not find another application
in the context of Mazur’s Theorem, we will limit ourselves to an overview
of how the Jacobian is constructed.

First select a point O ∈ C, whose image will serve as the identity in Jac(C).
Consider Cg, the product of g copies of C, and define a map:

φ : Cg −→ Pic0(C)

(P1, . . . , Pg) 7−→ [P1] + . . .+ [Pg]− g[O]

Note that for the case g = 1 we recover the isomorphism P 7→ [P ] − [O].
The problem this time is that this map is evidently not injective. Namely,
every permutation of Sg (the symmetric group on g elements) applied to
the Pi’s will map to the same point of Pic0(C). Consider then C(g) = Cg/Sg.
This seems to be a reasonable guess, and it turns out to be the correct one.
Checking injectivity and surjectivity is not very hard. It is the definition of a
group law on C(g) isomorphic to the group law of Pic0(C) that is somewhat
tricky, and we refer to [Weil] for a complete description of how this can be
done.

(b) Note that the map

ψ : C −→ Jac(C)

P 7−→ [P ]− [O]

is an embedding of C into its Jacobian. This is easily seen by viewing ψ as a
restriction of φ given by

φ|{(P,O,...,O)∈C(g):P∈C}C −→ Pic0(C)

(P1, O, . . . , O) 7−→[P1] + [O] + . . .+ [O]− g[O] = [P1]− [O]
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Remark 1.2. For arbitrary k, and C defined over k, the only difference is that
Jac(C) will also be defined over k, and that the isomorphism φwill be compatible
with Gal(k/k).

Going back to our application, we let J0(N) = Jac(X0(N)), where we let
O = [∞] (note that Pic0(X0(N)) is nontrivial by our assumptions on N ). This is
an abelian variety defined over Q, and the embedding:

ψ : X0(N) −→ Jac(C)

[z] 7−→ [z]− [∞]

is defined over Q and it is compatible with the action of Gal(Q/Q).

Remark 1.3. The maps wN and T` defined in I.2.2 and I.2.3 extend via the embed-
ding ψ to give endomorphisms (defined over Q) of J0(N). In fact, note that J0(N)

is a much more natural setting for the Hecke operators T` to act: the formal sums
defining them become formal sums of divisors inside Pic0(C), which correspond
to sums using the group law of J0(N).

Remark 1.4. Note that, as an abelian variety, Jac(C) = C(g) is generated by the
points of C, an observation which will be useful in the future.

1.2 The Group C

We are going to focus our attention on the point c = ψ([0]) = [0] − [∞] ∈ J0(N).
By [Ogg, Prop. 2] the point [0] belongs to X0(N)(Q) for N prime, and therefore
it maps to a point of J0(N)(Q). We will denote by C the subgroup of J0(N)(Q)

generated by c. We have the following:

Proposition 1.5. The group C is a cyclic group of order n = num
(
N−1
12

)
Proof. This is [Ogg, Theorem].

Note in particular that whenever num
(
N−1
12

)
6= 1 we have c 6= [∞] ∈ J0(N).

This is always satisfied in our case, since we are assumingN 6= 2, 3, 5, 7, 13. More-
over:
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Proposition 1.6.

(a) wN(c) = −c

(b) T`(c) = (`+ 1)c

Proof.

(a) From Chapter 1, Proposition 2.6, we have:

wN(c) = wN([0])− wN([∞]) = [∞]− [0] = −c

(b) From Chapter 1, Proposition 2.8, we have:

T`(c) = T`([0])− T`([∞]) = (`+ 1)([0])− (`+ 1)([∞]) = (`+ 1)c

In particular, note that the group C is invariant under the action of T` and
wN .

1.3 The Hecke Algebra

Denote by End(J0(N)) the set of all endomorphism of J0(N) defined over C (EndQ

will denote the ones defined over Q). Being J0(N) an abelian variety, we can ’add’
two endomorphisms by pointwise addition in the group law and we can ’multi-
ply’ them using composition. It is straightforward to check then that End(J0(N))

forms a ring.

By Remark 1.3, we know already two kinds of endomorphisms: the invo-
lution wN from and the Hecke operators T` for ` a prime ` 6= N . These were de-
fined on X0(N) but by they both extend to give well-defined Q-endomorphisms
of J0(N).

Definition 1.7. Denote by T ⊂ End(J0(N)) the subring generated by wN and by
T` for every prime ` 6= N . By extension of scalars, we can form the Q-algebra
Q⊗T, wich we call the Hecke algebra.
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Ken Ribet proved the following:

Theorem 1.8. Let N be a prime. Then Q⊗T ∼= End(J0(N))⊗Q

Proof.

See [Rib]

In particular, note that every endomorphism of J0(N) is defined over Q.

It can be shown by direct computation that the Q-algebra Q⊗T is commu-
tative and free of rank g = dim J0(N) = g(X0(N)). Moreover:

Theorem 1.9. Q⊗T ∼=
∏

αKα, where each Kα is a totally real number field.

Proof. This is a done in [AtLe], Lemmas 13 and 27.

For each α we have a map T → Kα given by projection. Its kernel is an
ideal pα which is prime and does not contain any other prime ideal (i.e the pα are
minimal). Moreover, these are all the minimal prime ideals of T.

Remark 1.10. Following the discussion of Ribet in [Rib] we see that Theorem 1.9
gives us a decomposition up to isogeny of the kind:

J0(N) ∼=
∏
α

Jα

where each Jα is a simple abelian variety, no pair of which is isomorphic, with

gα = dim(Jα) = [Kα : Q]

and such that
Q⊗ EndQ(Jα) = Q⊗ End(Jα) = Kα

the first equality being a consequence of Theorem 1.8.

1.4 The Eisenstein Ideal

Consider now the ideal I of T generated by 1 +wN and all the 1 + `− T` for each
` 6= N .
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Proposition 1.11. I(C) = [0] ∈ J0(N)

Proof.

It suffices to check the equality on the generators of I and C. By Proposition
1.6(a), wN(c) = −c and therefore (1 + wN) = c − c = 0. By Proposition 1.6(b),
T`(c) = (`+1)c for every prime ` 6= N , and therefore (1+`−T`)(c) = c+`c−`c−c =

0.

Proposition 1.12. There is an isomorphism T/I ↔ Z/nZ, where n = num
(
N−1
12

)
.

Proof. Consider the action of T on C. For any prime ` 6= N , T` ∈ T acts as ` + 1

on C, whereasm wN acts as −1. Moreover, by Proposition I.2.9, we know that

T`T`′ = T``′

for any two primes `, `′ 6= N (we are using here the extended definition of Hecke
operators Tn for any integer n. See the discussion preceding I.2.9)

Moreover, since C is cyclic of order n (Proposition 1.5) T` acts in fact as
multiplication by `+1 mod n. This action factors through I, by Proposition 1.11,
from which one deduces a surjective homomorphism T/I → Z/nZ. For the proof
that this is fact an isomorphism, see [Maz II.9.7].

Corollary 1.13. I 6= T

Proof.

This is immediate, since our assumption that N 6= 2, 3, 5, 7, 13 implies that
n = num

(
N−1
12

)
6= 1.

Corollary 1.14.

(a) The maximal ideals of T containing I are precisely the ideals B = I + pT, for
every p | n.

(b) T/B ∼= Z/pZ

Proof.
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(a) By the Chinese Remainder theorem, the maximal ideals of Z/nZ correspond
precisely to the primes p dividing n. Under the isomorphism of Proposition
1.12, which sends (p) ⊂ Z/nZ to pT, the maximal ideals of Z/nZ are in bijec-
tion with the maximal ideals of T/I, i.e. the maximal ideals of T containing
I.

(b) Clear from part (a).

Denote now by TI the completion of T by the I-adic topology. This is a ring
with finitely many maximal ideals (i.e. a semi-local ring), which correspond to the
maximal ideals of T containing I. These are precisely the ideals B described in
Corollary 1.14. We call the ideals B the Eisenstein primes of T.

Proposition 1.15. Let φ : T → TI be the natural homomorphism. For each α, let
pα be the kernel of the homomorphism T → Kα, where Kα is as in Theorem 1.9. Let
a = ker(φ). Then

a =
⋂
{pα : pα + I 6= T}

Proof.

Let a ∈ ker(φ). Then a ∈ Ir for every power r > 0. Pick any pα such
that pα + I 6= T and consider the ring T/pα. Let Ĩ be the image of I inside this
quotient and consider the completion (T/pα)Ĩ. Since pα is prime, the ring T/pα

is an integral domain and since pα + I 6= T this integral domain is nontrivial. It
follows that the natural map

ψ : T/pα −→ (T/pα)Ĩ

is an injection. Since a ∈ Ir, for every power r > 0, its image ã in the quotient
T/pα lies inside Ĩr for every power r > 0. Therefore ψ(ã) = 0 in (T/pα)Ĩ and
since ψ is injective we have ã = 0 in T/pα. This is equivalent to saying that
a ∈ pα, which proves the inclusion a ⊆

⋂
{pα : pα + I 6= T}.

For the reverse inclusion, suppose γ ∈
⋂
{pα : pα + I 6= T}. Denote by γ̃ the

image of γ under the isomorphism of theorem 1.9. Then (after tensoring with Q)
we can write γ̃ = (t1, . . . , tk) where tα ∈ Kα. Suppose WLOG that the α such that
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pα + I 6= T are precisely the first k− 1 indices of this decomposition. Since γ ∈ pα

for each of these α, t1 = . . . = tk−1 = 0 and we can write

γ = (0, 0, 0, . . . , 0, tn)

On the other hand, the element δ̃ = (1, . . . , 1, 0) is the image of an element
of a pα such that pα + I = T. In particular, we can find an element i ∈ I such that
δ + i = 1. But then δ − 1 = (0, . . . ,−1) ∈ I and so is γ. With a similar argument
we can show that γ ∈ Ir for every r.

Now, by definition, a is an ideal of T. The set

aJ0(N) = {[P ] ∈ J0(N) : ∃[Q] such that ψ([Q]) = [P ] for some ψ ∈ a}

is an abelian subvariety of J0(N), generated by the images of the endomor-
phisms of a.

Definition 1.16. Consider the quotient

J0(N)/aJ0(N) = J

We call J the Eisenstein Quotient of J0(N).

Remark 1.17. By Remark 1.10, the Eisenstein quotient of J0(N) has a decomposi-
tion (up to isogeny) of the form

J =
∏
α′

Jα′

where this time α′ runs only over the α’s of Remark 1.10 such that pα + I 6= T. In
other words, by taking the Eisenstein quotient we have managed to ’kill’ all the
simple abelian subvarieties Jα corresponding to prime ideals pα such that pα and
I are not contained by any maximal ideal B of corollary 1.14. In other words, each
Jα′ corresponds to an ideal pα′ contained in some B.
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2 Admissible Filtrations

In this section we are going to develop some tools that will allow us to prove
that J(Q), the group of rational points on the Eisenstein quotient, is finite. The
strategy is to use a descent method similar, for example, to the one used to prove
the weak Mordell-Weil Theorem for elliptic curves [See Si1 VIII, X]. There one
wants to bound the size of the Galois cohomology group H1(GalK/K , E[m] : S),
which is the set of all cocycles ξ such that ξ is trivial in H1(Iv, E[m]) for every v

outside S, S finite (here Iv denotes the inertia group at v).

In our specific case, Galois cohomoloy is replaced by a more sophisticated
cohomology coming from scheme theory (the fppf -cohomology) which has the
advantage of picking up the information coming not only from the action of
GalK/K , but also from the action of the inertia groups Iv for every place v of K
(similar to what H1(·, · : S) does).

Unfortunately, computations with fppf -cohomology can be very hard, and
therefore we want to define a certain family of modules (called admissible) where
these computationsm (or, better, the computations on their corresponding group
schemes) become easy. We will see in Section 3 that the piece of torsion of J(Q) we
are interested in (corresponding to E[m] in the proof of the weak Mordell-Weil)
is in fact admissible.

2.1 Definitions

Let M be a finite abelian module.

Definition 2.1. By a filtration of M we mean a finite chain

0 = M1 ⊂M2 ⊂ . . . ⊂Mr = M

of sub-modules of M , where each inclusion is proper. The filtration {Mi}ri=1 is
simple if each sucessive quotient

Hi = Mi+1/Mi

is simple, i.e. if it has no submodules other than 0 and itself. We call each Hi a
constituent of M . We say that r is the length of M .
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Remark 2.2. Suppose that there is another simple filtration {Nj}sj=1 of M . By
the Jordan-Hölder Thoerem [Lang I.3] s = r and there is a bijection between the
constituents of M with respect to {Mi}ri=1 and the constituents with respect to
{Nj}sj=1. Therefore the terms constituent of M and length of M are well defined.

Remark 2.3. Suppose M has a simple filtration {Mi}ri=1. Then for each i we have
an exact sequence:

0 →Mi →Mi+1 → Hi → 0

Definition 2.4. Suppose thatM has exponent p, i.e. every element ofM is of order
a power of p. By an admissible filtration of a p-group we mean a simple filtration of
M such that each constituent is isomorphic to either µp, the p-th roots of unity, or
Z/pZ.

2.2 fppf -Cohomology

Suppose now that Gal(Q/Q) acts onM , i.e. the points ofM are algebraic numbers
(this is also called a Galois module). Recall from basic Galois cohomology [see for
example Si1 B] that we define:

H0(Gal(Q/Q),M) = M(Q)

i.e the rational points of M . One can also define higher cohomology groups by
looking at homomorphisms between G and M . However, for our application
the use of Galois cohomology will not suffice. Just as in the case for the weak
Mordell Weil Theorem, where one has to impose conditions on the ramification
ofE[N ] and defineH1(GalK/K , E[m] : S), we need to impose local conditions, (i.e.
conditions on the reductions of the points of M ).

It turns out that the right object to study is that of a group scheme. For an
introduction to schemes [Har II-III] is somewhat of a standard reference, and for
a discussion of group schemes see [Si2, IV]. On group schemes, one can use the
powerful machinery of fppf -cohomology (see [EGA IV.2]). Therefore, the strat-
egy is to first build a group scheme for J0(N) (which will also give subgroup
schemes corresponding to subgroups of J0(N)) and then apply fppf to it.
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In general, it is not clear how to start with a Galois module M and build a
group scheme on it such that the points of this scheme over Q will correspond to
M . However, we have the following facts:

Fact 2.5. ForM = J0(N), we can define a group scheme J0(N)/S (called the Néron
Model of J0(N)) such that J0(N)/S(Q) = J0(N)(Q). This construction is essen-
tially unique (see [Si2 IV.5]).

Fact 2.6. For M = Z/p (resp. µp) there is also an essentially unique group scheme
Z/p (resp. µp) with the same point-preserving property (see [Maz I.1.6]).

An issue with fppf cohomology is that computations are hard to perform.
We therefore want to find suitable subgroup schemes of J0(N) on which this is
easy. The theory of admissible filtrations comes handy in our case.

The notion of an exact sequence carries over for group schemes, and so does
the notion of admissible p-group schemes (i.e. a group scheme of order p which
has a filtration of subschemes with successive quotients isomorphic to either Z/p

or µp). Most importantly

Fact 2.7. Denote byG/S a group scheme of order p defined over S, the set of prime
ideals of Z. Then G/S is admissible if and only if its associated Galois module
G(Q) = M(Q) is admissible. For a proof, see [Maz I.1-2].

For any group scheme G/S with associated Galois module M , we let:

H0(S,G/S) = G(Q) = M(Q)

and

H1(S,G/S)

be the first cohomology group taken with respect to the fppf -cohomology, where
S is the set of prime ideals of Z.

Just as in Galois cohomology, we have the following theorem with fppf :

Proposition 2.8. Let

0 → G1 → G2 → G3 → 0
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be any short exact sequence of group schemes over S with associated Galois modules Mi.
Then there exists a long exact sequence

0 →M1(Q) →M2(Q) →M3(Q) → H1(S,G1)

→ H1(S,G2) → H1(S,G3) → . . .

Let now N be a prime 6= p. For any p-group scheme G over S − {N} with
corresponding Galois p-module M , define:

h0(G) = logp(#H
0(S,G)) = #M(Q)

h1(G) = logp(#H
i(S,G))

`(G) = logp(#M(Q))

δ(G) = `(M)− logp(#M̃(FN))

α(G) = logp(#M̃(Fp))

where we have denoted by M̃ the reduction of M modulo a prime of S.

Note that all these constants depend only on the Galois module M , except
for h1. However, we have the following bound:

Proposition 2.9. Let G be an admissible p-group scheme over S − {N}, and let N be a
prime 6= p. Then:

h1(G)− h0(G) ≤ δ(G)− α(G)

Proof.

We discuss an outline of the proof, which is contained in [Maz,p.48-49]. The
first step is to prove that if

0 → Gi → Gi+1 → Hi → 0

is the exact sequence of group schemes corresponding to Remark 2.3, then

h1(Gi+1)− h0(Gi+1) ≤ (h1(Gi)− h0(Gi)) + (h1(Hi)− h0(Hi))
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which can be proven by using the long exact sequence of Proposition 2.8. Then,
by induction, one only needs to check the inequality for G1 = 0 and for each
constituent Hi. Since G is p-admissible, each Hi corresponds to either µp or Z/pZ
(not quite, but see [Maz I.1.1b]), so one has to compute the constants hi, `, δ, α, hi

only for µp and Z/p (and their extensions to N ). This is done in [Maz p.48] (note
however that the first two columns should be switched).

Remark 2.10. Proposition 2.9 shows that it’s easy to bound the first fppf coho-
mology on admissible p-groups. Moreover, this bound is in terms of constants
that can be computed directly from the associated moduleM . By Fact 2.7, a group
scheme is admissible if and only if its associate module is admissible. In other
words, if one trusts all the scheme-theoretic machinery to work just as stated, all
the computations can be reduced to computations on Galois modules.

3 Finiteness of J(Q)

In this section, we prove that the Eisenstein quotient of J0(N) has only finitely
many Q-rational points. Firstly, we show that a certain torsion subgroup J0(N)[B]

is admissible, where B = pT + I is an Eisenstein prime. By Fact 2.7, the corre-
sponding subscheme inside the Néron model J0(N)/S (see Fact 2.5) is admissi-
ble. Next, we perform pm-descent on J0(N) using fppf -cohomology on its Néron
model. We use admissibility of J0(N)[B] to derive admissibility of certain pm-
torsion subschemes of J0(N)/S , for which we have the bounds given by Proposi-
tion 2.9. Those bounds will quickly imply finiteness of J(Q). Finally, we derive
the finiteness of X0(N)(Q) from the finiteness of J(Q).

3.1 Torsion subgroups of J0(N)

For any ideal a ∈ End J0(N), define:

J0(N)[a] = J0(N)(Q)[a] = {Q ∈ J0(N)(Q) : φ(Q) = [O] ∀φ ∈ a}

Then this is a finite abelian module, and the group Gal(Q/Q) acts on it by
acting on the coordinates of the points.
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Fact 3.1. The variety J0(N)/Q has good reduction everywhere but at N (Igusa
1959).

Proposition 3.2. Let B = pT + I. Then J0(N)[B] is admissible.

Proof.

Note first that the inclusion B ⊃ pT implies a reverse inclusion J0(N)[B] ⊂
J0(N)[p], from which we see that J0(N)[B] has exponent p. Denote by W the di-
rect sum of J0(N)[B] and its Cartier dual (this is just the analogous of the dual
Hom(E[N ], µp) induced by the Weil pairing on elliptic curves). Consider the re-
duction of J0(N)[B] modulo Fp and let d be its dimension. Then W is a self-dual
(with respect to Cartier duality) Galois module of dimension 2d over Fp. The ac-
tion of the Galois group Gal(Q/Q) on W factors through a quotient G, which is
finite since W is finite. Let now ` be a prime 6= N, p. The Hecke operator T` and
the Frobenius endomorphism φ` are both elements of the ring End(J̃0(N)(F`)). By
the Eichler-Shimura relation (see [Ste]), these are related in End(J̃0(N)(F`)) by:

φ` − T`φ` + ` = 0

Since J0(N) has good reduction at `, we have an injection:

End(J0(N)(Q)) ↪→ End(J0(N)(F`))

and therefore the relation holds in End(J0(N)(Q)) as well. On the other hand,
note that B ⊃ I and therefore T` acts as ` + 1 on W , since every element of W
is annihilated by I. We deduce that φ` acts as 1 or ` on W , where the values get
switched by Cartier duality. Since W is Cartier self-dual of dimension 2d, φ` must
have minimal polynomial equal to (x− 1)d(x− `)d.

Let now W ′ be the Gal(Q/Q)-module (Z/pZ)d ⊕ (µp)
d. Every element of

Gal(Q/Q) that fixes the elements of W certainly also fixes W ′, therefore we can
assume the action of Gal(Q/Q) on W ′ factors through G as well. The character-
istic polynomial of φ` ∈ G on W ′ is also given by (x − 1)d(x − `)d and by the
Cebotarev density theorem any element of G is the image of φ` for some ` 6= p,N .
We can now apply the Brauer-Nesbitt Theorem [CuRe] to deduce that the semi-
semplification of the representation for W is isomorphic W ′. But W ′ is evidently
admissible , and so is W . Since W is the direct sum of J0(N)[B] and its Cartier
dual, the module J0(N)[B] is also p-admissible.
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Corollary 3.3. J0(N)[Br] is admissible for every r > 0.

Proof.

Let r > 0 be an integer and let H be any constituent of an admissible filtra-
tion of J0(N)[Br]. Pick t generators (a1, . . . , at) for the vector space Br/Br+1. The
map

J0(N)[Br+1]

J0(N)[Br]
−→

t⊕
i=1

J0(N)(Q)[B]

P 7−→ a1P ⊕ . . .⊕ atP

is an injection, and therefore H is isomorphic to a constituent of J0(N)[B]. The
Corollary follows from Proposition 3.2.

Let now p be any prime dividing n = num
(
N−1
12

)
. Consider Tp = Zp⊗T, the

p-adic completion of the Hecke algebra. This is a semi-local ring whose maximal
ideals are precisely the maximal ideals containing p. Consequently, Tp breaks up
into a direct product of local rings

Tp
∼=
∏

a

Ta

where the product runs through all maximal ideals a ⊂ T containing p. In par-
ticular, one of the a is the Eisenstein prime B containing p and I. Let εB be the
idempotent corresponding to this factor, i.e. the map the projects Tp → TB.

Consider now the torsion subgroup J0(N)[pm], for some integer m > 0. The
action of T on it factors through T/pmT, since by definition every element of
J0(N)[pm] is annihilated by pm. Since Zp is simply the inverse limit of the rings
Z/pmZ, we deduce that there is an action of Tp on J0(N)[pm] for every m. In
particular, the idempotent εB acts on this subgroup and we define:

J0(N)[pm]B = εBJ0(N)[pm]

Proposition 3.4. J0(N)[pm]B is p-admissible

Proof. This follows by noting that J0(N)[p]B = J0(N)[B] and by Proposition 3.2.
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Now that we have proved that the torsion subgroup J0(N)[pm]B is admissi-
ble, we want to apply fppf cohomology to its corresponding subgroup scheme
inside the Néron model J0(N)/S . However, fppf will not work on the Néron
model as it is. We need to take the so called ’connected component of the iden-
tity’ of J0(N)/S . We denote this component by J0(N)0

/S . In terms of points, this
corresponds to the component of J0(N)/S whose points always reduce to smooth
points. For a discussion in the case of elliptic curves, see [Si2 IV.5].

Remark 3.5. By Fact 3.1, J0(N) has good reduction everywhere but at N , so
J0(N)0

/S differs from J0(N)/S only above N . Moreover, we have that the quotient:

J0(N)/S
J0(N)0

/S

is finite.

Any of the torsion subgroups defined in this section extend uniquely to sub-
group schemes of the Néron model J0(N)/S . In particular, let

J0(N)[pm]/S ⊂ J0(N)/S

be the subgroup scheme corresponding to J0(N)[pm], and denote by J0(N)0[pm]/S

its connected component of the identity. Moreover, define

J0(N)0[pm]B/S = εBJ0(N)0[pm]/S

By Proposition 3.4, and Fact 2.7, this is admissible. Moreover, after having taken
the connected component of the identity, we are ready to apply fppf -cohomology
to it.

Recall from Theorem 1.9 that there is a decomposition Q⊗T ∼=
∏

αKα, with
Kα totally real number fields of degree

gα = [Kα : Q]

Then gB, be the rank of TB over Zp, is simply the sum of all the gα such that the
associated Pα is contained in B. Using this, we obtain the following bounds:

Proposition 3.6. Let α(·) and δ(·) be the constants defined in Proposition 2.7. Then
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(a) δ(J0(N)0[pm]B/S) = mgB +O(1) as m→∞

(b) α(J0(N)0[pm]B/S) = mgB +O(1) as m→∞

Proof. This is in [Ma1, p.148]

We conclude with the following very important proposition:

Proposition 3.7. There exists a constant C <∞ such that

#H1(S, J0(N)0[pm]B/S) ≤ C

for every integer m > 0.

Proof.

By Proposition 3.4 and fact 2.7, J0(N)0[pm]B/S is admissible. Therefore, by
Proposition 2.9 we can deduce that:

h1(J0(N)0[pm]B/S)− h0(J0(N)0[pm]B/S) ≤ δ(J0(N)0[pm]B/S)− α(J0(N)0[pm]B/S)

Now, the group H0(S, J0(N)0[pm]B/S) = J0(N)0(Q)[pm]B is finite, being a sub-
group of the torsion of the Mordell-Weil group of J0(N). The bounds of Proposi-
tion 3.6 then give the desired result.

Remark 3.8. Proposition 3.7 is the heart of the descent argument. It seems that
the very construction of the Eisenstein ideal was motivated in the first place by
trying to obtain the finiteness statement of Proposition 3.7. The rest of the descent
argument, presented in the next section, is simply an application of cohomologi-
cal machinery.

3.2 Descent on J0(N)

In this section we prove the following theorem

Theorem 3.9. The group of rational points on the Eisenstein quotient J(Q) is finite.

In order to prove Theorem 3.9, we first apply pm-descent on J0(N) using
fppf -cohomology:
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Proposition 3.10. The group TB ⊗T J0(N)(Q) is finite.

Proof.

For each positive integer m ≥ 1, consider the exact sequence of group
schemes:

0 → J0(N)0[pm]/S → J0(N)0
/S

pm

−→ J0(N)0
/S → 0

Applying Proposition 2.8, we obtain a long exact sequence

0 → J0(N)0(Q)[pm] → J0(N)0(Q)
pm

−→H1(S, J0(N)0[pm]/S)

→ H1(S, J0(N)0
/S)

pm

−→ H1(S, J0(N)0
/S) → . . .

from which we extract an injection:

J0(N)0(Q)

pmJ0(N)0(Q)
↪→ H1(S, J0(N)0[pm]/S)

Taking the direct limit with respect to the pm maps, we obtain an injection:

Qp/Zp ⊗ J0(N)0(Q) −→ lim
→
H1(S, J0(N)0[pm]/S)

(note that duality interchanges inverse and direct limits).

Since the ring TB is flat, being the completion of a noetherian ring, we derive
an injection of B-components:

TB ⊗TB

(
Qp/Zp ⊗ J0(N)0(Q)

)
−→ lim

→
H1(S, J0(N)0[pm]B/S)

By Proposition 3.7, the set on the right is finite, and so the one on the left
is finite as well. Now, the group J0(N)0(Q) is finitely generated, from which we
deduce that TB ⊗TB

J0(N)0(Q) is finite. By Remark 3.5, the set J0(N)/J0(N)0 is
finite, from which it follows that TB ⊗TB

J0(N)(Q) is finite as well.

In order to put Proposition 3.10 to use, we need a few arguments from com-
mutative algebra. Let a be any ideal of T and consider the kernel of the map
T → Ta. This is just the intersection γ(a) = ∩rar. Let T(a) = T/γ(a) and let

J (a) = J0(N)/γ(a)J0(N)
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(note the parallel with the construction of the Eisenstein quotient, with a = I).
Consider also V = J0(N)(Q)⊗Q as a T⊗Q-module, and V (a) = J (a)(Q)⊗Q as a
T(a) ⊗Q module.

Lemma 3.11. V (a) = T(a) ⊗T V

Proof.

For any exact sequence

0 → A→ B → C →

of abelian varieties defined over Q, consider the long exact sequence of Galois
Cohomology

0 → A(Q) → B(Q) → C(Q) → H1(Gal(Q/Q), A) → . . .

Since A(Q) is finitely-generated and every element H1(Gal(Q/Q), A) is of finite
order for any abelian variety over Q, we can tensor with Q to get an exact se-
quence:

0 → A(Q) → B(Q) → C(Q) → 0

Applying this result to our exact sequence:

0 → γ(a)J0(N) → J0(N) → J (a) → 0

we deduce that V (a) = V/γ(a)V = T(a) ⊗T V .

Lemma 3.12. If Ta ⊗T V = 0, then J (a)(Q) is finite.

Proof.

LetW be the torsion free part of J0(N)(Q). If Ta⊗TW = 0, as in the hypoth-
esis, then every element of W is ’killed’ by a prime ideal in Ta, i.e. a prime ideal
containing a. On the other hand, every prime ideal containing a also contains
every prime ideal of T (a), by construction. Therefore there are only finitely many
maximal ideals in T (a) that do not annihilate M . Therefore T(a) ⊗T W = 0, which
implies T(a) ⊗T V = 0. Applying Lemma 3.11 gives the desired result.
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We now conlude the proof of Theorem 3.9

Proof of Theorem 3.9.

For any Eisenstein prime B, Proposition 3.10 gives us that TB ⊗T V = 0.
Taking the product over all the Eisenstein primes we deduce that

TI ⊗T V = 0

and from Lemma 3.12, we conclude that J (I)(Q) = J(Q) is finite.

3.3 Finiteness of X0(N)(Q)

Theorem 3.13. Let N be a prime, N 6= 2, 3, 5, 7, 13. Then the set X0(N)(Q) is finite.

Proof.

Consider the sequence of maps:

X0(N) ↪→ J0(N) → J

the first being given by [z] → [z]− [∞] as in Proposition 1.1(b), and the second by
projection onto the Eisenstein quotient. Denote by X̂0(N) the projection of X0(N)

inside J . Since X0(N) is connected of dimension 1, X̂0(N) is either a point or a
curve. To see that X̂0(N) is non-trivial, note that by Remark 1.4, the points of
X0(N) generate J0(N) as a group, therefore the points of X̂0(N) generate J . But
dim(J) ≥ 1, so it cannot be generated by the trivial element. Therefore X̂0(N) is
non-empty and it must have dimension 1. We conclude that the map X0(N) →
X̂0(N) is a finite surjective map of curves. By Theorem 3.9, the group J(Q) is
finite, and so X̂0(N)(Q) ⊂ J(Q) is finite as well. But we have just shown that the
map X0(N) → X̂0(N) is finite (and defined over Q), hence X0(N)(Q) is finite.



Chapter III

Mazur’s Theorem

The results developed in the previous two chapters will allow us to prove here
the following theorem, commonly known as Mazur’s Theorem.

Theorem (Mazur). Let E be an elliptic curve defined over Q. Then Etors(Q) is isomor-
phic to one of the following fifteen groups:

• Z/nZ for 1 ≤ n ≤ 10 or n = 12

• Z/2Z× Z/mZ for m = 2, 4, 6, 8

The proof we reproduce here, as originally presented in [Maz,III.5], pro-
ceeds by contradiction as follows:

Implication 1: Suppose Mazur’s Theorem is false. Then there exists an
elliptic curve E defined over Q with a subgroup H ⊂ Etors(Q) of order N ,
for N a prime number and N ≥ 23.

Implication 2: Suppose E is an elliptic curve defined over Q with a sub-
group H ⊂ Etors(Q) of order N , for N a prime number and N ≥ 23. Let
K = Q(ζN), for ζN a primitive root of unity, and let L = Q(E[N ]), obtained
by adjoining the coordinates of all N -torsion points of E. Then L/K is un-
ramified at all places of K.

Implication 3: If L/K is unramified at all places of K, then L = K.

53
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Implication 4: If L = K then there exists infinitely many points on the curve
X0(N)(Q).

But since N is a prime and N ≥ 23, Implication 4 contradicts Theorem II.3.13.

1 Kubert’s Computations

The first implication is a restatement of the following result, due to D.S. Kubert
[Kub, Theorem IV.1.2]

Theorem 1.1 (Kubert). Let E be an elliptic curve defined over Q. If Etors(Q) is not one
of the 15 groups mentioned in Mazur’s Theorem, then there exists a prime N ≥ 23 such
that Etors(Q) has a subgroup of order N .

Proof.

We only include a sketch of the proof, which is given by a case by case
analysis. First, it is clear that it suffices to only consider primes, for if Etors(Q) has
a subgroup of order m a product of primes, then by the Sylow theorems it has a
subgroup of order p for each of the primes dividing m.

Next, we need to consider all possible structures of the groupEtors(Q). Being
a finite abelian group, we must have:

Etors(Q) = Z/d1Z× Z/d2Z× . . .Z/drZ

where d1 | d2 | . . . | dr. If r > 2, then Etors(Q) would contain the subgroup
(Z/d1Z)3, which would also be a subgroup of E[d1]. But E[d1] ∼= (Z/d1Z)2, so
we must have r = 1, 2. Moreover, suppose that d1 > 2. Then (Z/d1Z)2 ∼= E[d1]

would be contained in E[d1](Q), which is impossible since by [Si1 III.8.1.1] this
can happen only if d1 = 1, 2. In other words:

Etors(Q) = Z/dZ or Z/2Z× Z/d2Z

where d ≥ 1 is an integer and 2 | d2.

Consider first the case when Etors(Q) is cyiclic of order d. We want to show
that d is not divisible by any prime N < 23, i.e. that Etors(Q) has no subgroups
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of prime order N < 23. If N 6= 2, 3, 5, 7, one only needs to show that the curves
Y0(N)(Q) are empty. The cases N = 11, 17, 19 are somewhat easier since, from
Proposition I.1.15, g(X0(N)) = 1 and one can use the methods of descent devel-
oped for elliptic curves. These cases are completely analyzed by Ligozat [Lig].
Mazur and Tate, on the other hand, proved in [MaTa] that there are no ratio-
nal points of order 13 on elliptic curves defined over Q. If N = 2, 3, 5, 7 and
N | d, N < 23, we want to prove that d = 2, 3, 4, 5, 6, 7, 8, 9, 10, 12. Now, the cases
d = 14, 15, 20, 21, 24, 27, 32, 36, 49 again correspond to curves Y0(d)(Q) of genus 1,
which Ligozat proved are empty. Lind [Lind] proved that Y0(16)(Q) is also empty
. The cases d = 18, 25, 35 are dealt with by Kubert in IV.5, and this covers all the
possible cases when Etors(Q) is cyclic of order d and N < 23, N = 2, 3, 5, 7 divides
d.

It remains to consider the case when Etors(Q) takes the form Z/2Z × Z/d2Z
where 2 | d2. The cases d2 = 2, 4, 6, 8 correspond to the structures allowed by
Mazur’s Theorem. The case d = 16 (and hence higher powers of 2) follows from
Lind’s work. From what we proved in the previous paragraph, we also know
that d2 is not divisibile by any prime N different from 2, 3, 5, 7, therefore it suf-
fices only to consider the cases Z/2Z×Z/10Z,Z/2Z×Z/12Z,Z/2Z×Z/14Z. The
latter would yield a point on Y0(14)(Q), which is impossible by Ligozat’s work.
The other two cases are 2-isogenous to curves E ′ with a cyclic group of order
20 and 24, respectively, which are contained in E ′

tors(Q) since the multiplication-
by-2 isogeny is defined over Q. But this would yield points on Y0(20)(Q) and
Y0(24)(Q), respectively, which again is impossible by Ligozat.

2 L/K is unramified

In this section we will prove the following proposition:

Proposition 2.1. Let E be an elliptic curve defined over Q, and such that Etors(Q) con-
tains a cyclic subgroup of orderN , forN a prime andN ≥ 23. LetK = Q(ζN), where ζN
is a primitive N -th root of unity, and let L = Q(E[n]) be the field obtained by adjoining
all the coordinates of the N -th torsion points of E. Then L/K is unramified at all places
of K.
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Note that L is a Galois extension of Q which contains ζN by the nondegen-
racy of the Weil pairing [Si1 III.8.1.1], and therefore the statement of the proposi-
tion makes sense. To be precise, what we prove is actually the following, which
is slightly stronger than 2.1:

Proposition 2.2. Let E,L,K as in Proposition 2.1. Then

(a) If E has good reduction at a rational prime q 6= N , then L/Q is unramified at q.

(b) If E does not have good reduction at a rational prime q 6= N , then L/Q is unrami-
fied at q.

(c) Let q = N . Then L/K is unramified above K.

We denote by Qq the q-adic completion of Q and by Zq the ring of q-adic
integers. As an extension of Qq, L is given by the same polynomials with coeffi-
cients embedded inside Qq. Moreover, L/Qq is unramified if and only if L/Q is
unramified above q, so it suffices to look at each of the extensions L/Qq, where
we can apply the powerful tools of [Si1 VII].

Before proving Proposition 2.2, we need to introduce some notation. Let

πq : E/Qq → Ẽ/Fq

be the ’reduction modulo q’ map, where Ẽ is the curve defined over Fq by reduc-
ing the coefficients of a minimal Weierstrass equation of E modulo q. This curve
might be singular, so let Ẽns(Fq) be the group of all its Fq-rational smooth points.
Moreover, let:

E0(Qq) = {P ∈ E(Qq) : πq(P ) ∈ Ẽns(Fq)}
E1(Qq) = {P ∈ E0(Qq) : πq(P ) = O ∈ Ẽns(Fq)}

Denote by H the putative subgroup of Etors(Q) of order N , a prime ≥ 23, and
define:

H0(Qq) = {P ∈ H : πq(P ) ∈ Ẽns(Fq)}
E[N ]0(Qq) = {P ∈ E(Qq)[N ] : πq(P ) ∈ Ẽns(Fq)}.

We break down the proof of Proposition 2.2 in three lemmas: Lemma 2.3,
Lemma 2.7 and Lemma 2.8. We derive Proposition 2.2 at the end of this section.
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Lemma 2.3. Let E be as in Proposition 2.1. Then E has semi-stable (i.e. good or multi-
plicative) reduction at all places of Q.

Proof.

For the sake of contradiction, suppose that there exists a rational prime q
such that E has additive reduction at q i.e.

Ẽns(Fq) =
(
Fq
)+

We either haveH∩E0(Qq) = {O} orH ⊂ E0(Qq), sinceH is of prime order. In the
former case the image ofH in the quotient E(Qq)/E0(Qq) would be a subgroup of
order N ≥ 23. But by the classification of Kodaira-Néron [Si1 VII.6.1], we know
that E(Qq)/E0(Qq) is finite of order 1,2,3 or 4 so this is impossible. Therefore H ⊂
E0(Qq). In this case, the image of H under πq is a subgroup of Ẽns(Fq) ∼= (Fq)+,
therefore it is 0 unless N = q, in which case it is the whole group. If q 6= N then,
H ⊂ E1(Qq), which is impossible since E1(Qq) has no m-torsion points for all m
relatively prime to q [Si1 VII.3.1] Therefore we must have N = q.

Next, we show that even the case N = q is impossible, that is, E does not
have additive reduction at N . Recall the following Proposition ([Si1 VII.5.4]):

Proposition 2.4. LetK be a local field complete with respect to a discrete valuation v, and
let π be a generator for the unique maximal ideal of OK . Let E/K be an elliptic curve.
Then there exists a finite extension K ′/K such that E has good or split multiplicative
reduction over K ′. Moreover, the ramification degree of K ′/K can be taken to be at most
6.

Proof. Since it will be the case in our applications, assume char(k) 6= 2, where k is
the residue field OK/(π). If E is given by y2 = f(x), extend K so that f(x) splits
and change coordinates so to obtain an equation for E in Legendre normal form
[Si1 III.1.7]:

y2 = x(x− 1)(x− λ) λ 6= 0, 1

Consider then the two quantities c4,∆ associated to this equation:

c4 = 16(λ2 − λ+ 1) , ∆ = 16λ2(λ− 1)2
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and apply [Si1 VII.5.1]. If λ ∈ OK and λ 6≡ 0, 1 (π) then v(∆) = 0 and the curve
has good reduction. If λ ∈ OK and λ ≡ 0, 1 (π) then v(∆) > 0 but v(c4) = 0 so the
curve has split multiplicative reduction.

The interesting case then is when λ /∈ OK . Suppose that v(λ) = −r for some
positive integer r. Then v(πrλ) = 0 and the substitution x 7→ π−rx′, y 7→ π−3r/2y′

gives a Weierstrass equation

y′ = x′(x− πr)(x′ − πrλ)

that has split multiplicative reduction at (π). Note that in order to perform the
change of variables, we need to (possibly) extend our field to K(π1/2). In the
worst case scenario, we will have to extend K twice: first to split f(x), a cubic
polynomial, and then to adjoin the square root of π. Since the ramification de-
gree of the first extension is at most 3, and the ramification degree of the second
extension is at most 2, we have that the ramification degree of K ′/K is at most
6.

Now letK ′/QN be as in Proposition 2.4, so that our curveE has good or split
multiplicative reduction at the maximal ideal of OK′ . Denote by FNk the residue
field of OK′ . Taken over the ring OK′ , the curve E has two different Weierstrass
equations defining it, one coming from the original equation with coefficients in
ZN , call it E1, and the other with coefficients in OK′ obtained by the process of
Proposition 2.4, call it E2. By the Néron Mapping Property [Si2 IV.5], the isomor-
phism between E1 and E2 induces an isogeny ψ (defined over FNk) between the
reductions of the two curves:

(FN)×

(
FN
)+ ∼= Ẽ1

ns

ψ
- Ẽ2

ns

∼= -

E ′/FNk

∼=
-

where by the split arrows we just mean one of the two possibilities for the reduc-
tion of E2(K ′). Suppose that ψ is nontrivial. If E2 has multiplicative reduction,
then the composition of ψ with the homomorphism given by the top arrow gives
a nontrivial homomorphism

ψ :
(
FN
)+ −→ (

FN
)×
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which is impossible from the following Lemma.

Lemma 2.5. Let k be an algebraically closed field. Let Ga be the additive group variety
defined by Ga = A1 (i.e. k[X] with the usual addition of polynomials) and let Gm =

k[X,Y ]/(XY − 1) be the multiplicative group variety. Then there are no nontrivial
morphisms ψ : Ga → Gm.

Proof.

Note first that by projecting Gm onto the affine line Ga
∼= A1, we get that

Gm
∼= A1−{0}. Composing ψ with the injection A1−{0} ↪→ A1 gives a morphism:

A1 ψ−→ A1 − {0} → A1

which is an endomorphism of A1 ∼= Ga. Since every nonconstant endomorphism
of Ga must be a nonconstant single variable polynomial, hence surjective, we
derive a contradiction, since the map above is clearly not surjective.

Note that in our case Lemma 2.5 applies with k = FN , Ga =
(
FN
)+

, Gm =(
FN
)×

.

On the other hand, suppose that E2 has good reduction. Then the composi-
tion of ψ with the homomorphism given by the bottom arrow gives a nontrivial
homomorphism:

ψ :
(
FN
)+ −→ E ′/FNk

where by E ′/FNk we just mean an elliptic curve defined over FNk . This is again
impossible from the following:

Lemma 2.6. Let k be an algebraically closed field and let Ga as in Lemma 2.5. Then there
are no nontrivial morphisms

φ : Ga → E/k

where E/k is an elliptic curve defined over k.

Proof.

From the definition, Ga
∼= A1 ∼= P1 − {∞}. Therefore, φ can be extended

to give a morphism P1 → E. Since this is nonconstant, it must be surjective
[Har II.6.8]. But P1 has genus 0, whereas E has genus 1, which contradicts the
Riemann-Hurwitz formula [Si1 II.5.9].
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Therefore ψ must be trivial.

Now, the subgroup H contained inside E1 is isomorphic (over OK′) to a
subgroup H ′ of order N contained inside E2. Reduction modulo N gives us two
corresponding subgroups H̃ and H̃ ′ on Ẽ1

ns and Ẽ2
ns respectively. Since the ram-

ification degree of K ′/QN is between 0 ≤ 6 < N − 1 (recall our assumptions on
N ) we can apply the results of [Ray] to deduce that the isomorphism between H
and H ′ induces an isomorphism between H̃ and H̃ ′. But we just saw how this is
impossible. This conludes the proof of Lemma 2.3

Lemma 2.7. Let E be as in Proposition 2.1. If q = 2, 3 then E has multiplicative
reduction at q and H * E0(Qq)

Proof.

If E had good reduction at q, then E0(Qq) = E(Qq) and in particular H ⊂
E0(Qq). Since E1(Qq) has no N -torsion, the image of H under πq would be a
subgroup of Ẽns(Fq) of order N . But from the Hasse bound on the size of elliptic
curves over finite fields, we know that #E(Fq) ≤ 2

√
q + q + 1, from which we

conclude that N ≤ 2
√
q + q + 1. This is impossible, since N ≥ 23 and q = 2, 3.

Therefore E cannot have good reduction at q. It cannot have additive reduction
either, by Lemma 2.3, so it must have multiplicative reduction.

Suppose then H ⊂ E0(Qq). By [Si1, Exercise III.3.5] Ẽ(Fq) ⊂ (Fq2)×, so the
reduction of H is contained in (Fq2)×. But (Fq2)× has q2 − 1 (i.e. 3 or 8) points,
whereas H has at least 23 points. Therefore H * E0(Qq).

Lemma 2.8. Let E be as in Proposition 2.1. If q is a prime where E does not have good
reduction then H * E0(Qq).

Proof.

Suppose this is not the case, so that q is a prime where E does not have
good reduction andH ⊂ E0(Qq). By section 4.2, q 6= 2, 3. Moreover, if q = N , then
by section 4.1 the reduction is multiplicative, and if H ⊂ E0(QN) then H would
map to a subgroup of order N of (FN2)×, which is impossible since N - N2 − 1.
Therefore we can assume q 6= 2, 3, N .
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Now, the curve X0(N)(Q) has good reduction everywhere but at N , there-
fore we have a reduction map:

φq : X0(N) −→ X̃0(N)/Fq

Since E has multiplicative reduction at q, the point (E,H) does not map to
any point of Ỹ0(N). In fact, under the ’generalized elliptic curve’ interpretation,
we see that the condition H ⊂ E0(Qq) implies that

φq((E,H)) = [0] ∈ X̃0(N)/Fq

On the other hand, if we take q = 3, then

φ3((E,H)) = [∞] ∈ X̃0(N)/F3

since E also has multiplicative reduction at 3 but H * E0(Q3), by Lemma 2.7.

Consider now the projection X0(N) → J , where J is the Eisenstein quotient
defined in II.1.16. This is an abelian variety defined over Q, and we can consider
its reduction J̃/Fq modulo q. For any prime ` 6= 2, N , by the Oort-Tate classifica-
tion theorem [OrTa] we have an injection

Jtors ↪→ J̃(F`)

In particular, by Theorem II.3.9 J(Q) is finite [REF], J(Q) ⊂ Jtors and by compos-
ing we get an injection

J(Q) ↪→ J̃(F`)(III.1)

for any prime ` 6= 2, N . In other words, for any ` we have the following commu-
tative diagram:

X0(N)(Q) - J(Q)

X̃0(N)(F`)
?

- J̃(F`)
?

Let ` = q and consider the point (E,H) ∈ X0(N)(Q). By the above, this point
maps to [0̃] ∈ X̃0(N)(Fq), and therefore it maps to [0̃] ∈ J̃(Fq). By the injection (1),
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the preimage of [0̃] ∈ J̃(Fq) must be [0] in J(Q). In other words, (E,H) maps to
[0] ∈ J(Q).

On the other hand, if we take ` = 3, then (E,H) maps to [∞̃] ∈ X0(N)(F3),
and by the same argument we must have that (E,H) maps to [∞] ∈ J(Q). We
conclude that [0] = [∞] in J(Q). But [0] − [∞] has order n = num

(
N−1
12

)
in J(Q)

[Maz III.1.4]. If n = 1, then we are forced to conlcude that N − 1 ≤ 12, which
contradicts our initial assumption of N ≥ 23. This concludes the proof of Lemma
2.8.

Now we can conclude the proof of Proposition 2.2, which is equivalent to
Proposition 2.1.

Proof of Proposition 2.2.

(a) Let q 6= N be any prime where E has good reduction. Then by the crite-
rion of Néron-Ogg-Shafarevich [Si1 VII.7.1], the extension L/Q is unrami-
fied above q. We quickly review the argument here. IfE has good reduction,
then E0 = E and we have an exact sequence:

0 → E1(L/Qq) → E(L/Qq) → Ẽ(k) → 0

where we have indicated by k the residue field of L/Qq. Now, the group
E1(L/Qq) contains no points of order N , whereas E(L/Qq) contains all of
them, by definition of L. Therefore we have an injection

E[N ] ↪→ Ẽ(k)

But the intertia group I(L/Qq) acts trivially on Ẽ(k), and therefore it must
act trivially on E[N ], by injectivity. Therefore L/Qq is unramified, from
which it follows immediately that L/Q (hence L/K) is unramified at q.

(b) Let q 6= N be a prime where E has bad, hence multiplicative (by Lemma
2.3), reduction.

We claim that E0[N ] contains a Galois submodule isomorphic to µN , the
N -th roots of unity. To see this, consider the exact sequence

0 → H(L/Qq) → E(L/Qq)[N ] → µN → 0
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of Gal(L/Qq) modules, where the injection is given by inclusion and the
surjection by the Weil pairing with one argument fixed. We deduce an exact
sequence:

0 → H0(L/Qq) → E0(L/Qq)[N ] → µN → 0

But by Lemma 2.8, H * E0(Qq), so H0(L/Qq) = {O}. In particular, E0[N ] ∼=
µN and therefore E[N ] contains a Galois sub-module isomorphic to µN . It
follows that E[N ] ∼= H ⊕ µN . But now, the inertia group I(L/Qq(ζN))v acts
trivially on both H and µN for any prime v of Qq(ζN) lying above q, and
therefore it acts trivially on E[N ]. Therefore L/Qq(ζN) is unramified and
L/K is unramified at q. It is a well-known fact (see for example [Wash,
Proposition 2.1]) that the discriminant ofK/Q is a power ofN , and therefore
the only rational prime that ramifies in K is N itself. It follows that K/Q is
unramified at q and therefore L/Q is unramified at q.

(c) Let q = N . By Lemma 2.3 E does not have additive reduction at N . By the
first paragraph of Lemma 2.8, if E has multiplicative reduction at N , then
H * E0(Qq) and we can proceed as in (b). So suppose E has good reduction
at N . We have an exact sequence of group schemes:

0 → Z/p → E[N ]/S → µp → 0

Where Z/p and µp are defined as in Fact II.2.6 and E[N ]/S is the subgroup
scheme of the Néron Model E/S for S. If we take the connected component
of each group scheme in the sequence, we deduce that E0[N ]/S = µP, since
Z/p consists of p closed points above N , and therefore its connected com-
ponent is trivial. But again, this shows that we get the desired splitting of
E[N ].

3 Herbrand’s Theorem

In this section we prove the following:
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Proposition 3.1. Suppose E is an elliptic curve defined over Q with a subgroup H ⊂
Etors(Q) of order N , for N a prime number and N ≥ 23. Let K = Q(ζN), for ζN a
primitive root of unity, and let L = Q(E[N ]), obtained by adjoining the coordinates of
all N -torsion points of E. Then L = K.

In light of Proposition 2.1, we know that L/K is unramified. Therefore in
order to prove Proposition 3.1 it suffices to prove the following:

Proposition 3.2. If L/K is everywhere unramified then L = K.

In order to prove Proposition 3.2, we need first a few defitions and a theorem
of Herbrand.

Let N be a prime and let L/K be a Galois extension such that L contains
ζN , a primitive N -th root of unity, and such that V = Gal(L/K(ζN)) is abelian of
exponent N (i.e. every element is of order dividing N ):

L

K(ζN)

K

Suppose further that the action of Gal(K(ζN)/K) on V induced by conjuga-
tion in Gal(L/K) is given by the formula:

τ · v = χ(τ)j · v

where χ : Gal(K(ζN)/K) → (FN)× is the cyclotomic character sending τ to the
element i ∈ (FN)× such that τ(ζN) = ζ iN . Then we call L a χj - extension of K(ζN).

The Bernoulli numbers Bi are defined as the coefficients appearing in the
power series expansion

z

ez − 1
=

∞∑
i=0

Bi
zi

i!

In particular, B0 = 1, B1 = −1/2, B2 = 1/6, . . . and Bi = 0 for i 6= 1 odd. For
any prime N , consider all the Bernoulli numbers of the form B2k, 2 ≤ 2k < N − 1,
and let j = 1 − 2k mod (N − 1). The following theorem of Herbrand gives a
necessary condition for the existence of an unramified χj-extension:
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Theorem 3.3 (Herbrand). If N - num (B2k), then there are no nontrivial everywhere
unramified χj-extensions of Q(ζN).

Proof. See [Wash 6.3].

In particular, Herbrand’s Theorem gives that there are no nontrivial every-
where unramified χ−1-extensions of K = Q(ζN), since num(B2) = 1 is not divisi-
ble by N . It follows that in order to prove Proposition 3.2 it suffices to prove the
following Proposition:

Proposition 3.4. Suppose E is an elliptic curve defined over Q with a subgroup H ⊂
Etors(Q) of order N , for N a prime number and N ≥ 23. Let K = Q(ζN), for ζN a
primitive root of unity, and let L = Q(E[N ]), obtained by adjoining the coordinates of
all N -torsion points of E. Suppose that L 6= K. Then L is a χ−1-extension of K.

We prove two lemmas first.

Lemma 3.5. LetE,L,K as in Proposition 3.4. Then there exists a faitfhul representation

ρ : Gal(L/Q) ↪→ GL2(FN)

such that

ρ(σ) =

(
1 b(σ)

0 χ(σ)

)
where b(σ) ∈ FN and χ : Gal(L/Q) → (FN)× is the cyclotomic character mod N defined
by σ(ζN) = ζ

χ(σ)
N for σ acting on a primitive N -th root of unity ζN .

Proof.

Consider the map

eN(P, ·) : E[N ] → µN ⊂ K

given by the Weil pairing eN . This map is defined over L and surjective with
kernel equal to H . Composing with the inclusion H ⊂ E[N ] we get an exact
sequence of groups:

0 → H → E[N ] → µN → 0
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which is in fact an exact sequence of Gal(L/Q)-modules, since every map is de-
fined over L.

The exact sequence gives a faithful representation

ρ : Gal(L/Q) ↪→ GL2(FN)

that works as follows. Pick a Q ∈ E[N ] − H , so that P,Q form a basis for
E[N ]. For any σ ∈ Gal(L/Q), let

ρ(σ) =

(
a b

c d

)

where

σ(P ) = aP + cQ

σ(Q) = bP + dQ a, b, c, d ∈ FN

Since σ must permute primitive roots of unity, write σ(ζ) = ζχ(σ) for the
action of σ on a primitive N -th root of unity ζN . Note that χ is simply a homo-
morphism

Gal(L/Q) → (FN)×

which we called in the statement of the lemma the cyclotomic character mod N. Note
first that P ∈ Q and therefore c = 0 and a = 1. Also, from the non-degeneracy of
the Weil pairing we get that eN(P,Q) is a primitive N -th root of unity, so

σ(eN(P,Q)) = σ(ζN) = ζ
χ(σ)
N

On the other hand, from the Galois-invariance property we have

σ(eN(P,Q)) = eN(σ(P ), σ(Q))

= eN(P, bP + dQ)

= eN(P, bP )eN(P, dQ)

= eN(P,Q)d

= ζdN
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so that d = χ(σ) in (FN)×. In other words, we can write the action of σ on E[N ] as
the matrix

ρ(σ) =

(
1 b(σ)

0 χ(σ)

)

Lemma 3.6. Let E,L,K as in Proposition 3.4. Then we either have L = K or L/K
cyclic of order N .

Proof. From the shape of the representation given by Lemma 3.5 we see that
# Gal(L/Q) | N(N − 1). In particular, note that ρ restricted to an element τ ∈
Gal(L/K) ⊂ Gal(L/Q) has the form:

ρ(τ) =

(
1 b(τ)

0 1

)
since the action of χ is trivial on Gal(L/K). If there exists a τ ∈ Gal(L/K) such
that b(τ) 6= 0 (i.e. if K 6= L), we have an element of order N in Gal(L/K) ⊂
Gal(L/Q), hence N | # Gal(L/Q). On the other hand, the tower of fields

Q ⊂ K = Q(ζN) ⊂ L

implies that the degree of L/Q is divisible by N − 1, since K/Q is an extension of
degree N − 1. Since gcd(N,N1) = 1, we either have # Gal(L/Q) = N(N − 1), with
L/K cyclic of order N , or # Gal(L/Q) = N − 1, with L/K trivial.

We now proceed with the proof of Proposition 3.4 by computing the action
of Gal(K/Q) on Gal(L/K).

Proof of Proposition 3.4.

Let σ ∈ Gal(K/Q). There are several lifts of this element to an element
σ̃ ∈ Gal(L/Q) (remember we are assuming L 6= K) but pick any one for now. For
any τ ∈ Gal(L/K), define the action of σ by

σ(τ) = σ̃τ σ̃−1

One can check that this formula does not depend on our original choice of σ̃, so
that the action is well-defined. We want to compute this action explicitly inside
the representation given by Lemma 3.5.
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Recall from Lemma 3.5 that Gal(L/Q) has a representation of the form

ρ(u) =

(
1 b(u)

0 χ(u)

)

whereas from Lemma 3.6 we know that Gal(L/K) has a representation of
the form

ρ(τ) =

(
1 b(τ)

0 1

)

Let now σ ∈ Gal(K/Q) be given by

ρ(σ) =

(
1 b(σ)

0 χ(σ)

)

Since we are assuming L 6= K, by Lemma 3.6 the extension L/K has de-
gree N . Therefore there is a choice of N lifts for σ to Gal(L/Q), one for each
elemen b(σ) ∈ FN . For computational convenience, choose b(σ) = 0 so that

ρ(σ̃) =

(
1 0

0 χ(σ)

)
.

Then, for any τ ∈ Gal(L/K):

ρ(σ̃τ σ̃−1) =

(
1 0

0 χ(σ)

)
·

(
1 b(τ)

0 1

)
·

(
1 0

0 χ−1(σ)

)
=

(
1 b(τ)χ−1

0 1

)

In other words, given any τ ∈ Gal(L/K), the action of σ ∈ Gal(K/Q) is
given by the simple formula

σ(τ) = χ(σ)−1τ.

This concludes the proof of Proposition 3.4, which together with Herbrand’s
Theorem proves Proposition 3.2. Proposition 3.2 and Proposition 2.1 together
prove Proposition 3.1.
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4 End of the Proof

Proposition 3.1 gives us that the extension L/K is trivial. We now proceed in de-
riving a contradiction from this fact, and conclude the proof of Mazur’s Theorem.

Proposition 4.1. Let E be an elliptic curve defined over Q, and such that Etors(Q) con-
tains a cyclic subgroup H of order N , for N a prime and N ≥ 23. Let K = Q(ζN),
where ζN is a primitive N -th root of unity, and let L = Q(E[n]) be the field obtained by
adjoining all the coordinates of the N -th torsion points of E. If L = K there are infinitely
many points on the curve X0(N)(Q).

Proof.

Consider again the exact sequence:

0 → H → E[N ] → µN → 0

In view of Lemma 3.5, if K = L then Gal(K/Q) has a representation:(
1 0

0 χ(σ)

)

from which we deduce that E[N ] splits as E[N ] ∼= H ⊕ µN .

In this case, not only does E have a Galois sub-module H , but also a Ga-
lois sub-module Φ isomorphic to µN . Since Φ is invariant under the action of
Gal(Q/Q), we get by [Si1 III.4.13.2] that there is a curve E ′ defined over Q and an
isogeny ψ : E → E ′, also defined over Q, such that the kernel of ψ is Φ. Now, any
nonconstant isogeny is a surjective homomorphism, from which we deduce that
the group structure of E ′ is isomorphic to E/Φ. Since Φ ∩ H = ∅, the image of
H under this quotient is again a cyclic group H ′ = ψ(H) of order N and rational
over Q, since H and ψ are. But then the pair (E ′, H ′) satisfies the hypotheses of
Proposition 3.1, and we can repeat the same argument to find a pair (E ′′, H ′′) and
an isogeny ψ′ : E ′ → E ′′ with kernel Φ′ ∼= µN . Continuing this way we get a
chain:

(III.2) E
ψ−→ E ′ ψ′−→ E ′′ ψ′′−→ . . .

ψ(i−1)

−−−→ E(i) ψ(i)

−−→ . . .
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of elliptic curves defined over Q with a cyclic subgroup H(i) of order N , rational
over Q. Suppose there exists a pair (i, j) for which E(i) = E(j). The composition
of the maps ψ(k) between E(i) and E(j) then gives us an endomorphism of E(i)

defined over Q, so it must be one of the multiplication-by-m maps φ = [m] for
some integer m. Since kerφ = E(i)[m] contains a group of order N , namely Φ(i),
we must have m = N e · r for some e ≥ 1 and (N, r) = 1. But then H(i), which
is contained in E(i)[N ], would also be contained in ker(φ), which is impossible by
construction.

Therefore no pair (Ei, Ci) appearing in (2) is contained in the same isomor-
phism class, and we have found infinitely many points on the curve X0(N)(Q).
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